
Solutions Manual

for

Languages and Machines:

An Introduction to the Theory of

Computer Science

Third Edition

Thomas A. Sudkamp

Preface

This solution manual was written to accompany the third edition of Languages and Machines: An

Introduction to the Theory of Computer Science. It contains complete solutions to approximately
200 exercises from the text, including the “starred” exercises.

Acquiring a thorough background in and mastery of the foundations of computer science is not
a spectator sport, active participation is required. This participation takes several forms; putting
forth the effort to understand the theorems and their proofs, following the techniques used to solve
the problems in the examples, and solving problems on your own. It is the ability to do the latter
that exhibits proficiency with the material. These solutions have been provided as a tool to assist
students in developing their problem solving skills.

The exercises in this manual were selected to complement the presentation in the text. The
solutions illustrate general techniques for solving the particular type of problem or extend the the-
oretical development of a topic. Understanding the strategies employed in these solutions should
provide valuable insights that can be used in solving many of the other exercises in the text.

Thomas Sudkamp Dayton, Ohio

Copyright 2005: Thomas Sudkamp

All rights reserved. No part of this is to be reproduced, stored in a retrieval system, or transmitted
in any form without the prior written permission of the author or the Addison-Wesley Publishing
Co.

i

ii

Contents

1 Mathematical Preliminaries 1

2 Languages 7

3 Context-Free Grammars 11

4 Normal Forms for Context-Free Grammars 19

5 Finite Automata 25

6 Properties of Regular Languages 31

7 Pushdown Automata and Context-Free Languages 37

8 Turing Machines 45

9 Turing Computable Functions 53

10 The Chomsky Hierarchy 59

11 Decision Problems and the Church-Turing Thesis 63

12 Undecidability 67

13 µ-Recursive Functions 73

14 Time Complexity 79

15 P,NP, and Cook’s Theorem 83

16 NP-Complete Problems 87

17 Additional Complexity Classes 95

18 Parsing: An Introduction 99

19 LL(k) Grammars 101

20 LR(k) Grammars 107

iii

iv

Chapter 1

Mathematical Preliminaries

5. To prove that X ∩ Y = (X ∪Y) requires establishing both of the inclusions X ∩ Y ⊆ (X ∪Y)
and (X ∪Y) ⊆ X ∩Y.

i) Let a ∈ X ∩ Y. By the definition of intersection, a ∈ X and a ∈ Y. Thus a 6∈ X and a 6∈
Y or, in terms of union, a 6∈ (X ∪Y). It follows that a ∈ (X ∪Y).

ii) Now assume that a ∈ (X ∪Y). Then a 6∈ X ∪ Y. This implies that a 6∈ X and a 6∈ Y.
Consequently, a ∈ X ∩Y.

Part (i) shows that X∩Y is a subset of (X ∪Y), while (ii) establishes the inclusion (X ∪Y) ⊆
X ∩Y.

A completely analogous argument can be used to establish the equality of the sets (X ∩Y)
and X ∪Y.

6. a) The function f(n) = 2n is total and one-to-one. However, it is not onto since the range
is the set of even numbers.

b) The function

f(n) =

{

0 if n = 0
n− 1 otherwise

is total and onto. It is not one-to-one since f(0) = f(1) = 0.

c) The function

f(n) =







1 if n = 0
0 if n = 1
n otherwise

is total, one-to-one, and onto but not the identity.

d) The function

f(n) =

{

n/2 if n is even
↑ otherwise

maps the even natural numbers onto the entire set of natural numbers. It is not a total
function from N to N, since it is not defined for odd natural numbers.

13. To prove that ≡p is an equivalence relation, we must show that it is reflexive, symmetric, and
transitive. This is shown using the same argument given in Example 1.3.1, which explicitly
considers the case when p = 2.

i) Reflexivity: For every natural number n, n mod p = n mod p.

1

2 CHAPTER 1. MATHEMATICAL PRELIMINARIES

ii) Symmetry: If n mod p = m mod p, then m mod p = n mod p.

iii) Transitivity: If n mod p = m mod p and m mod p = k mod p, then n mod p = k mod p.

The equivalence classes of ≡p are the sets consisting of natural numbers that are equal mod p:

[0]≡p
= {0, p, 2p, 3p, . . .}

[1]≡p
= {1, p+ 1, 2p+ 1, 3p+ 1, . . .}

[2]≡p
= {2, p+ 2, 2p+ 2, 3p+ 2, . . .}

...

[p− 1]≡p
= {p− 1, 2p− 1, 3p− 1, 4p− 1, . . .}.

15. i) Reflexivity: To demonstrate reflexivity, we must show that every ordered pair [m,n] is
related to itself. The requirement for [m,n] to be related to [m,n] by ≡ is m+n = n+m,
which follows from the commutativity of addition.

ii) Symmetry: If [m,n] ≡ [j, k], then m+k = n+ j. Again, by commutativity, j+n = k+m
and [j, k] ≡ [m,n].

iii) Transitivity: [m,n] ≡ [j, k] and [j, k] ≡ [s, t] imply m + k = n + j and j + t = k + s.
Adding the second equality to the first, we obtain

m+ k + j + t = n+ j + k + s.

Subtracting j + k from each side yields m + t = n + s, showing that [m,n] ≡ [s, t] as
desired.

18. The set of non-negative rational numbers is defined by

{n/m | n ∈ N, m ∈ N− {0}}

A rational number n/m can be represented by the ordered pair [n,m]. This representation
defines a one-to-one correspondence between the rational numbers and the set N× (N−{0}).
The latter set is known to be countable by Theorem 1.4.4.

22. Diagonalization is used to prove that there are an uncountable number of monotone increasing
functions. Assume that the set of monotone increasing functions is countable. Then these
functions can be listed in a sequence f0, f1, f2, . . . , fn,

Now we will show that there is at least one (in fact there are infinitely many) monotone
increasing function that is not in the listing. Define a function f as follows:

f(0) = f0(0) + 1

f(i) = fi(i) + f(i− 1)

for i > 0. Since fi(i) > 0, it follows that f(i) > f(i− 1) for all i and f is monotone increasing.

Clearly f(i) 6= fi(i) for any i, contradicting the assumption that f0, f1, . . ., fn, . . . exhaus-
tively enumerates the monotone increasing functions. Thus the assumption that the monotone
increasing functions comprise a countable set leads to a contradiction and we conclude that
the set is uncountable.

25. To show that the set of real numbers in the interval [0, a] is uncountable, we first observe that
every real number in (0, 1] can be expressed by an infinite decimal .x0x1x2. . .xn With such
a representation, the number 1

2 is represented by both .50000 . . . and .49999 To obtain a

SOLUTIONS TO EXERCISES 3

unique representation, we consider only decimal expansions that do not end with an infinite
sequence of zeros.

Assume the set of real numbers in (0, 1] is countable. This implies that there is a sequence

r0, r1, r2, . . . , rn, . . .

that contains all of the real numbers in the interval (0, 1]. Let the decimal expansion of rn

be denoted .xn0xn1xn2 The enumeration given above is used to construct an infinite
two-dimensional array, the ith row of which consists of the expansion of ri.

r0 = x00 x01 x02 . . .
r1 = x10 x11 x12 . . .
r2 = x20 x21 x22 . . .
...

...
...

...

With the unique decimal representation, two numbers are distinct if they differ at any position
in the decimal expansion. A real number r = x0x1 . . . is defined using the diagonal elements
in the array formed by the xii’s as follows:

xi =

{

2 if xii = 1
1 otherwise.

Clearly r 6= ri for any i since the ith position of r, xi, is not identical to the ith position of ri.
Therefore the assumption that the enumeration contains all real numbers in (0, 1] fails, and
we conclude that the set is uncountable.

28. Before proving the Schröder-Bernstein Theorem, we consider the special case where card(B) ≤
card(A), card(A) ≤ card(B), and B ⊆ A.

The relationship card(B) ≤ card(A) follows immediately from the inclusion B ⊆ A since the
identity function id : B→ A is a one-to-one function from B into A.

By definition, card(A) ≤ card(B) means there is a one-to-one function f from A into B. We
will use f to construct a one-to-one function h : A → B from A onto B. The function h
demonstrates that A and B have the same cardinality.

The diagram

B

Af

4 CHAPTER 1. MATHEMATICAL PRELIMINARIES

illustrates the mapping f . The function f is defined for all elements in A (which includes all
elements of B) and the values of f , indicated by the heads of the arrows, must all be in B.

For each x ∈ A− B, we define the set

ch(x) = {x, f(x), f(f(x))), . . . , f i(x), . . .}.

Every element in ch(x) is in B, except for x itself which is in A− B. Let

C =
⋃

x∈ A−B

ch(x).

Now define the function h : A→ B as follows:

h(z) =

{

f(z), if z ∈ C;
z, otherwise.

To show that h is a one-to-one, we must prove that h(x) = h(y) implies that x = y. There are
four cases to consider.

Case 1: x, y 6∈ C. Then x = h(x) = h(y) = y.

Case 2: x ∈ C and y 6∈ C. Since x ∈ C, h(x) = f(x) is in C. But h(x) = h(y) = y. This implies
that y ∈ C, which is a contradiction. Thus h(x) cannot equal h(y) in this case.

Case 3: x 6∈ C and y ∈ C. Same argument as case 2.

Case 4: x, y ∈ C. Let f i denote the composition of f with itself i times, and f 0 denote the
identity function. The proof uses the fact that the composition of one-to-one functions is one-
to-one. Although you will be familiar with functional composition from previous mathematical
studies, a description and formal definition are given in Section 9.4 of the text if you need a
reminder.

Since x and y are both in C, x = fm(s) and y = fn(t) for some s, t ∈ A− B. Then

h(x) = f(fm(s)) = h(y) = f(fn(t)).

If m = n, then s = t and x = y and we are done. Assume that m > n. Then fm−n(s) = t.
Applying the function fn to both sides we get fm(s) = fn(t), or equivalently, x = y. A similar
argument shows x = y when m < n.

We now show that h maps A onto B. For each x ∈ B but not in C, h(x) = x and x is covered
by the mapping. If x ∈ B and x ∈ C, then x = f(t) for some t ∈ C because each element in C
is either in A − B or obtained by the result of applying f to an element in C. Consequently,
each element of B is ‘hit’ by the mapping h. Because h is a one-to-one function from A to B,
we conclude that card(A) = card(B).

To prove the Schröder-Bernstein Theorem in its generality, we must show that card(X) ≤
card(Y) and card(Y) ≤ card(X) implies card(X) = card(Y) for arbitrary sets X and Y. By
the assumption, there are one-to-one functions f : X→ Y and g : Y→ X. Let

Im(Y) = {x ∈ X | x = g(y) for some y in Y}

be the image of Y in X under g. Now

- Im(Y) is a subset of X,

- Im(Y) has the same cardinality as Y (g is one-to-one and onto), and

- the composition f ◦ g is a one-to-one mapping from X into Im(Y).

SOLUTIONS TO EXERCISES 5

By the preceding result, card(X) = card(Im(Y)). It follows that card(X) = card(Y) by
Exercise 27.

31. Let L be the set of the points in N ×N on the line defined by n = 3 ·m. L can be defined
recursively by

Basis: [0, 0] ∈ L.

Recursive step: If [m, n] ∈ L, then [s(m), s(s(s(n)))] ∈ L.

Closure: [m, n] ∈ L only if it can be obtained from [0, 0] using finitely many applications of
the recursive step.

33. The product of two natural numbers can be defined recursively using addition and the successor
operator s.

Basis: if n = 0 then m · n = 0

Recursive step: m · s(n) = m + (m · n)

Closure: m · n = k only if this equality can be obtained from m · 0 = 0 using finitely many
applications of the recursive step.

37. The set F of finite subsets of the natural numbers can be defined recursively as follows:

Basis: ∅, {0} ∈ F

Recursive step: If {n} ∈ F , then {s(n)} ∈ F .
If X, Y ∈ F , then X ∪ Y ∈ F .

Closure: A set X is in F only if it can be obtained from the basis elements by a finite number
of applications of the recursive step.

The first rule in the recursive step generates all sets containing a single natural number. The
second rule combines previously generated sets to obtain sets of larger cardinality.

39. We prove, by induction on n, that

n
∑

i=0

2i = 2n+1 − 1

Basis: The basis is n = 0. We explicitly show that the equality holds for this case.

0
∑

i=0

2i = 20 = 1 = 21 − 1

Inductive hypothesis: Assume, for all values k = 1, 2, . . . , n, that

k
∑

i=0

2i = 2k+1 − 1

Inductive step: We need to show that

n+1
∑

i=0

2i = 2(n+1)+1 − 1

To utilize the inductive hypothesis, the summation is decomposed into the sum of the first n
powers of 2 and 2n+1.

6 CHAPTER 1. MATHEMATICAL PRELIMINARIES

n+1
∑

i=0

2i =

n
∑

i=0

2i + 2n+1

= 2n+1 − 1 + 2n+1 (inductive hypothesis)
= 2 · 2n+1 − 1
= 2(n+1)+1 − 1

43. The set R of nodes reachable from a given node x in a directed graph is defined recursively
using the adjacency relation A.

Basis: x ∈ R.

Recursive step: If y ∈ R and [y, z] ∈ A, then z ∈ R.

Closure: y ∈ R only if y can be obtained from x by finitely many applications of the recursive
step.

46. a) The depth of the tree is 4.

b) The set of ancestors of x11 is {x11, x7, x2, x1}. Recall that by our definition is node is an
ancestor of itself, which is certainly not the case in family trees.

c) The minimal common ancestor of x14 and x11 is x2; of x15 and x11 is x1.

d) The subtree generated by x2 is comprised of the arcs [x2, x5], [x2, x6], [x2, x7], [x5, x10],
[x7, x11], and [x10, x14].

e) The frontier is the set {x14, x6, x11, x3, x8, x12, x15, x16}.

48. Induction on the depth of the tree is used to prove that a complete binary tree T of depth n
has 2n+1 − 1 nodes. Let nodes(T) and leaves(T) denote the number of nodes and leaves in a
tree T.

Basis: The basis consists of trees of depth zero; that is, trees consisting solely of the root.
For any such tree T, nodes(T) = 1 = 21 − 1.

Inductive hypothesis: Assume that every complete binary tree T of depth k, k = 0, . . . , n,
satisfies nodes(T) = 2k+1 − 1.

Inductive step: Let T be a complete binary tree of depth n+ 1, where n ≥ 0. We need to
show that nodes(T) = 2(n+1)+1 − 1. T is obtained by adding two children to each leaf of a
complete binary tree T′ of depth n. Since T′ is complete binary, it is also strictly binary and

leaves(T′) = (nodes(T′) + 1)/2

by Exercise 47. Thus

nodes(T) = nodes(T′) + 2 · leaves(T′)
= nodes(T′) + 2 · [(nodes(T′) + 1)/2] (Exercise 47)
= 2 · nodes(T′) + 1
= 2 · (2n+1 − 1) + 1 (inductive hypothesis)
= 2(n+1)+1 − 1

Chapter 2

Languages

3. We prove, by induction on the length of the string, that w = (wR)R for every string w ∈ Σ∗.

Basis: The basis consists of the null string. In this case, (λR)R = (λ)R = λ as desired.

Inductive hypothesis: Assume that (wR)R = w for all strings w ∈ Σ∗ of length n or less.

Inductive step: Let w be a string of length n+ 1. Then w = ua and

(wR)R = ((ua)R)R

= (aRuR)R (Theorem 2.1.6)
= (auR)R

= (uR)RaR (Theorem 2.1.6)
= uaR (inductive hypothesis)
= ua
= w

8. Let L denote the set of strings over Σ = {a, b} that contain twice as many a’s as b’s. The set
L can be defined recursively as follows:

Basis: λ ∈ L

Recursive step: If u ∈ L and u can be written xyzw where x, y, z, w ∈ Σ∗ then

i) xayazbw ∈ L,

ii) xaybzaw ∈ X, and

iii) xbyazaw ∈ X.

Closure: A string u is in L only if it can be obtained from λ using a finite number of appli-
cations of the recursive step.

Clearly, every string generated by the preceding definition has twice as many a’s as b’s. A proof
by induction on the length of strings demonstrates that every string with twice as many a’s
as b’s is generated by the recursive definition. Note that every string in L has length divisible
by three.

Basis: The basis consists of the null string, which satisfies the relation between the number
of a’s and b’s.

Inductive hypothesis: Assume that all strings with twice as many a’s as b’s of length k,
0 ≤ k ≤ n, are generated by the recursive definition.

7

8 CHAPTER 2. LANGUAGES

Inductive step: Let u be a string of length n + 3 with twice as many a’s as b’s. Since u
contains at least three elements, x can be written xayazbw, xaybzaw, or xbyazaw for some
x, y, w, z ∈ Σ∗. It follows that xyzw has twice as many a’s as b’s and, by the inductive
hypothesis, is generated by the recursive definition. Thus, one additional application of the
recursive step produces u from xyzw.

12. Let P denote the set of palindromes defined by the recursive definition and let W = {w ∈ Σ∗ |
w = wR}. Establishing that P = W requires demonstrating that each of the sets is a subset
of the other.

We begin by proving that P ⊆ W. The proof is by induction on the number of applications of
the recursive step in the definition of palindrome required to generate the string.

Basis: The basis consists of strings of P that are generated with no applications of the
recursive step. This set consists of λ and a, for every a ∈ Σ. Clearly, w = wR for every such
string.

Inductive hypothesis: Assume that every string generated by n or fewer applications of
the recursive step is in W.

Inductive step: Let u be a string generated by n+1 applications of the recursive step. Then
u = awa for some string w and symbol a ∈ Σ, where w is generated by n applications of the
recursive step. Thus,

uR = (awa)R

= aRwRaR (Theorem 2.1.6)
= awRa
= awa (inductive hypothesis)
= u

and u ∈W.

We now show that W ⊆ P. The proof is by induction on the length of the strings in W.

Basis: If length(u) = 0, then w = λ and λ ∈ P by the basis of the recursive definition.
Similarly, strings of length one in W are also in P.

Inductive hypothesis: Assume that every string w ∈ W with length n or less is in P.

Inductive step: Let w ∈ W be a string of length n + 1, n ≥ 1. Then w can be written ua
where length(u) = n. Taking the reversal,

w = wR = (ua)R = auR

Since w begins and ends with with same symbol, it may be written w = ava. Again, using
reversals we get

wR = (ava)R

= aRvRaR

= avRa

Since w = wR, we conclude that ava = avRa and v = vR. By the inductive hypothesis, v ∈ P.
It follows, from the recursive step in the definition of P, that w = ava is also in P.

SOLUTIONS TO EXERCISES 9

13. The language L2 consists of all strings over {a, b} of length four. L3, obtained by applying the
Kleene star operation to L2, contains all strings with length divisible by four. The null string,
with length zero, is in L3.

The language L1 ∩ L3 contains all strings that are in both L1 and L3. By being in L1, each
string must consist solely of a’s and have length divisible by three. Since L3 requires length
divisible by four, a string in L1 ∩ L3 must consist only of a’s and have length divisible by 12.
That is, L1 ∩ L3 = (a12)∗.

15. Since the null string is not allowed in the language, each string must contain at least one a
or one b or one c. However, it need not contain one of every symbol. The +’s in the regular
expression a+b∗c∗ ∪ a∗b+c∗ ∪ a∗b∗c+ ensure the presence of at least one element in each
string in the language.

21. The set of strings over {a, b} that contain the substrings aa and bb is represented by

(a ∪ b)∗aa(a ∪ b)∗bb(a ∪ b)∗ ∪ (a ∪ b)∗bb(a ∪ b)∗aa(a ∪ b)∗.

The two expressions joined by the ∪ indicate that the aa may precede or follow the bb.

23. The leading a and trailing cc are explicitly placed in the expression

a(a ∪ c)∗b(a ∪ c)∗b(a ∪ c)∗cc.

Any number of a’s and c’s, represented by the expression (a∪ c)∗, may surround the two b’s.

24. At first glance it may seem that the desired language is given by the regular expression

(a ∪ b)∗ab(a ∪ b)∗ba(a ∪ b)∗ ∪ (a ∪ b)∗ab(a ∪ b)∗ba(a ∪ b)∗.

Clearly every string in this language has substrings ab and ba. Every string described by the
preceding expression has length four or more. Have we missed some strings with the desired
property? Consider aba, bab, and aaaba. A regular expression for the set of strings containing
substrings ab and ba can be obtained by adding

(a ∪ b)∗aba(a ∪ b)∗ ∪ (a ∪ b)∗bab(a ∪ b)∗

to the expression above.

26. The language consisting of strings over {a, b} containing exactly three a’s is defined by the reg-
ular expression b∗ab∗ab∗ab∗. Applying the Kleene star to the preceding expression produces
strings in which the number of a’s is a multiple of three. However, (b∗ab∗ab∗ab∗)∗ does not
contain strings consisting of b’s alone; the null string is the only string that does have at least
three a’s. To obtain strings with no a’s, b∗ is concatenated to the end of the preceding expres-
sion. Strings consisting solely of b’s are obtained from (b∗ab∗ab∗ab∗)∗b∗ by concatenating
λ from (b∗ab∗ab∗ab∗)∗ with b’s from b∗. The regular expression (b∗ab∗ab∗a)b∗ defines the
same language.

28. In the regular expression
(ab ∪ ba ∪ aba ∪ b)∗,

a’s followed by a b are produced by the first component, a’s preceded by a b by the second
component, and two a’s “covered” by a single b by the third component. The inclusion of b
within the scope of the ∗ operator allows any number additional b’s to occur anywhere in the
string.

Another regular expression for this language is ((a ∪ λ)b(a ∪ λ))∗.

10 CHAPTER 2. LANGUAGES

31. Every aa in the expression (b ∪ ab ∪ aab)∗ is followed by at least one b, which precludes the
occurrence of aaa. However, every string in this expression ends with b while strings in the
language may end in a or aa as well as b. Thus the expression

(b ∪ ab ∪ aab)∗(λ ∪ a ∪ aa)

represents the set of all strings over {a, b} that do not contain the substring aaa.

32. A string can begin with any number of b’s. Once a’s are generated, it is necessary to ensure that
an occurrence of ab is either followed by another b or ends the string. The regular expression
b∗(a ∪ abb+)∗(λ ∪ ab) describes the desired language.

34. To obtain an expression for the strings over {a, b, c} with an odd number of occurrences of
the substring ab we first construct an expression w defining strings over {a, b, c} that do not
contain the substring ab,

w = b∗(a ∪ cb∗)∗.

Using w, the desired set can be written (wabwab)∗wabw.

37. The regular expression (b∗ab∗a)∗b∗ ∪ (a∗ba∗b)∗a∗ba∗ defines strings over {a, b} with an
even number of a’s or an odd number of b’s. This expression is obtained by combining an
expression for each of the component subsets with the union operation.

38. Exercises 37 and 38 illustrate the significant difference between union and intersection in
describing patterns with regular expressions. There is nothing intuitive about a regular ex-
pression for this language. The exercise is given, along with the hint, to indicate the need
for an algorithmic approach for producing regular expressions. A technique accomplish this
will follow from the ability to reduce finite state machines to regular expressions developed in
Chapter 6. Just for fun, a solution is

(

[aa ∪ ab(bb)∗ba] ∪ [(b ∪ a(bb)∗ba)(a(bb)∗a)∗(b ∪ ab(bb)∗a)]
)∗

.

39. a) (ba)+(a∗b∗ ∪ a∗)= (ba)+(a∗)(b∗ ∪ λ) (identity 5)
= (ba)∗baa∗(b∗ ∪ λ) (identity 4)
= (ba)∗ba+(b∗ ∪ λ)

c) Except where noted, each step employs an identity from rule 12 in Table 2.1.

(a ∪ b)∗ = (b ∪ a)∗ (identity 5)
= b∗(b ∪ a)∗ (identity 5)
= b∗(a∗b∗)∗

= (b∗a∗)∗b∗ (identity 11)
= (b ∪ a)∗b∗

= (a ∪ b)∗b∗ (identity 5)

Chapter 3

Context-Free Grammars

1. a) Derivation Rule

S ⇒ abSc S → abSc
⇒ ababScc S → abSc
⇒ ababAcc S → A
⇒ ababcAdcc A→ cAd
⇒ ababccddcc A→ cd

b) The derivation tree corresponding to the preceding derivation is

S

b S

a b S

A

c A

d d

d

c

ca

c) L(G)= {(ab)ncmdmcn | n ≥ 0,m > 0}

4. a) S ⇒ AB
⇒ aAB
⇒ aaB
⇒ aaAB
⇒ aaaB
⇒ aaab

b) S ⇒ AB

11

12 CHAPTER 3. CONTEXT-FREE GRAMMARS

⇒ AAB
⇒ AAb
⇒ Aab
⇒ aAab
⇒ aaab

c) There are 20 derivations that generate DT. There is no trick to obtaining this answer,
you simply must count the possible derivations represented by the tree.

6. a) The S rules S → aaSB and S → λ generate an equal number of leading aa’s and trailing
B’s. Each B is transformed into one or more b’s. Since at least one application of the
rule S → aaSB is necessary to generate b’s, strings consisting solely of b’s are not in the
language. The language of the grammar is {(aa)ibj | i > 0, j ≥ i} ∪ {λ}.

c) Repeated applications of the recursive rule S → abSdc produce a string of the form
(ab)iS(dc)i, i ≥ 0. The recursion is terminated by an application of the rule S → A. The
A rules produce strings of the form (cd)j(ba)j , j ≥ 0. The language generated by the
rules is {(ab)i(cd)j(ba)j(dc)i | i ≥ 0, j ≥ 0}.

8. The language consisting of the set of strings {anbmc2n+m | m,n > 0} is generated by

S → aScc | aAcc
A→ bAc | bc

For each leading a generated by the S rules, two c’s are produced at the end of the string. The
rule A rules generate an equal number of b’s and c’s.

12. A recursive definition of the set of strings over {a, b} that contain the same number of a’s and
b’s is given in Example 2.2.3. The recursive definition provides the insight for constructing the
rules of the context-free grammar

S → λ
S → SaSbS | SbSaS | SS

that generates the language. The basis of the recursive definition consists of the null string.
The first S rule produces this string. The recursive step consists of inserting an a and b in
a previously generated string or by concatenating two previously generated strings. These
operations are captured by the second set of S rules.

13. An a can be specifically placed in the middle position of a string using the rules

A→ aAa | aAb | bAa | bAb | a

The termination of the application of recursive A rules by the rule A → a inserts the symbol
a into the middle of the string. Using this strategy, the grammar

S → aAa | aAb | bBa | bBb | a | b
A→ aAa | aAb | bAa | bAb | a
B → aBa | aBb | bBa | bBb | b

generates all strings over {a, b} with the same symbol in the beginning and middle positions.
If the derivation begins with an S rule that begins with an a, the A rules ensure that an a
occurs in the middle of the string. Similarly, the S and B rules combine to produce strings
with a b in the first and middle positions.

SOLUTIONS TO EXERCISES 13

16. The language (a ∪ b)∗aa(a ∪ b)∗bb(a ∪ b)∗ is generated by

G1: S1 → aS1 | bS1 | aA
A→ aB
B → aB | bB | bC
C → bD
D → aD | bD | λ

G2 generates the strings (a ∪ b)∗bb(a ∪ b)∗aa(a ∪ b)∗

G2: S2 → aS2 | bS2 | bE
E → bF
F → aF | bF | aG
G→ aH
H → aH | bH | λ

A grammar G that generates

(a ∪ b)∗aa(a ∪ b)∗bb(a ∪ b)∗ ∪ (a ∪ b)∗bb(a ∪ b)∗aa(a ∪ b)∗

can be obtained from G1 and G2. The rules of G consist of the rules of G1 and G2 augmented
with S → S1 | S2 where S is the start symbol of the composite grammar. The alternative in
these productions corresponds to the ∪ in the definition of the language.

While the grammar described above generates the desired language, it is not regular. The
rules S → S1 | S2 do not have the form required for rules of a regular grammar. A regular
grammar can be obtained by explicitly replacing S1 and S2 in the S rules with the right-hand
sides of the S1 and S2 rules. The S rules of the new grammar are

S → aS1 | bS1 | aA
S → aS2 | bS2 | bE

The strategy used to modify the rules S → S1 | S2 is an instance of a more general rule
modification technique known as removing chain rules, which will be studied in detail in
Chapter 4.

20. The language ((a ∪ λ)b(a ∪ λ))∗ is generated by the grammar

S → aA | bB | λ
A→ bB
B → aS | bB | λ

This language consists of all strings over {a, b} in which every a is preceded or followed by a b.
An a generated by the rule S → aA is followed by a b. An a generated by B → aS is preceded
by a b.

24. The variables of the grammar indicate whether an even or odd number of ab’s has been
generated and the progress toward the next ab. The interpretation of the variables is

Variable Parity Progress toward ab
S even none
A even a
B odd none
C odd a

14 CHAPTER 3. CONTEXT-FREE GRAMMARS

The rules of the grammar are

S → aA | bS
A→ aA | bB
B → aC | bB | λ
C → aC | bS | λ

A derivation may terminate with a λ-rule when a B or a C is present in the sentential form
since this indicates that an odd number of ab’s have been generated.

25. The objective is to construct a grammar that generates the set of strings over {a, b} containing
an even number of a’s or an odd number of b’s. In the grammar,

S → aOa | bEa | bOb | aEb | λ
Ea → aOa | bEa | λ
Oa → aEa | bOa

Ob → aOb | bEb | λ
Eb → aEb | bOb

the Ea and Oa rules generate strings with an even number of a’s. The derivation of a string
with a positive even number of a’s is initiated by the application of an S rule that generates
either Ea or Oa. The derivation then alternates between occurrences of Ea and Oa until it is
terminated with an application of the rule Ea → λ.

In a like manner, the Ob and Eb rules generate strings with an odd number of b’s. The
string aab can be generated by two derivations; one beginning with the application of the rule
S → aOa and the other beginning with S → aEb.

30. Let G be the grammar S → aSbS | aS | λ. We prove that every prefix of sentential form of
G has at least as many a’s as b’s. We will refer to this condition as the prefix property. The
proof is by induction of the length of derivations of G.

Basis: The strings aSbS, aS and λ are the only sentential forms produced by derivations of
length one. The prefix property is seen to hold for these strings by inspection.

Inductive hypothesis: Assume that every sentential form that can be obtained by a deriva-
tion of length n or less satisfies the prefix property.

Inductive step: Let w be a sentential form of G that can be derived using n + 1 rule
applications. The derivation of w can be written

S
n
⇒ uSv ⇒ w

where w is obtained by applying an S rule to uSv. By the inductive hypothesis uSv satisfies
the prefix property. A prefix of w consists of a prefix of uSv with the S replaced by λ, aS or
aSbS. Thus w also satisfies the prefix property.

32. a) The language of G is (a+b+)+.

b) The rules S → aS and S → Sb allow the generation of leading a’s or trailing b’s in any
order. Two leftmost derivations for the string aabb are

S ⇒ aS S ⇒ Sb
⇒ aSb ⇒ aSb
⇒ aabb ⇒ aabb

SOLUTIONS TO EXERCISES 15

c) The derivation trees corresponding to the derivations of (b) are

S

a

a a

S b

b b

S

S

S

Sa

b

d) The unambiguous regular grammar

S → aS | aA
A→ bA | bS | b

is equivalent to G and generates strings unambiguously producing the terminals in a left-
to-right manner. The S rules generate the a’s and the A rules generate the b’s. The
process is repeated by the application of the rule A→ bS or terminated by an application
of A→ b.

33. a) The string consisting of ten a’s can be produced by two distinct derivations; one consisting
of five applications of the rule S → aaS followed by the λ-rule and the other consisting
of two applications of S → aaaaaS and the λ-rule.

To construct an unambiguous grammar that generates L(G), it is necessary to determine
precisely which strings are in L(G). The rules S → λ and S → aaS generate all strings
with an even number of a’s. Starting a derivation with a single application of S → aaaaaS
and completing it with applications of S → aaS and S → λ produces strings of length
5, 7, 9, The language of G consists of all strings of a’s except for a and aaa. This
language is generated by the unambiguous grammar

S → λ | aa | aaaA
A→ aA | a

d) L(G) is the set {λ}∪{aibj | i > 1, j > 0}. The null string is generated directly by the rule
S → λ. The rule S → AaSbB generates one a and one b. Applications of S → AaSbB,
A→ a, A→ aA, and B → bB generate additional a’s and b’s. The rule A→ a guarantees
that there are two or more a’s in every string nonnull in L(G).

To show that G is ambiguous we must find a string w ∈ L(G) that can be generated by
two distinct leftmost derivations. The prefix of a’s can be generated either by applications
of the rule S → AaSbB or by the A rules. Consider the derivation of the string aaaabb
in which two a’s are generated by applications of the S rule.

Derivation Rule

S ⇒ AaSbB S → AaSbB
⇒ aaSbB A→ a
⇒ aaAaSbBbB S → AaSbB
⇒ aaaaSbBbB A→ a
⇒ aaaabBbB S → λ
⇒ aaaabbB B → λ
⇒ aaaabb B → λ

The string can also be derived using the rules A→ aA and A→ a to generate the a’s.

Derivation Rule

16 CHAPTER 3. CONTEXT-FREE GRAMMARS

S ⇒ AaSbB S → AaSbB
⇒ aAaSbB A→ aA
⇒ aaAaSbB A→ aA
⇒ aaaaSbB A→ a
⇒ aaaabB S → λ
⇒ aaaabbB B → bB
⇒ aaaabb B → λ

The two distinct leftmost derivations of aaaabb demonstrate the ambiguity of G.

The regular grammar

S → aA | λ
A→ aA | aB
B → bB | b

generates strings in L(G) in a left-to-right manner. The rules S → aA and A → aB
guarantee the generation of at least two a’s in every nonnull string. The rule B → b,
whose application completes a derivation, ensures the presence of at least one b.

e) The variable A generates strings of the form (ab)i and B generates aibi for all i ≥ 0.
The only strings in common are λ and ab. Each of these strings can be generated by two
distinct leftmost derivations.

To produce an unambiguous grammar, it is necessary to ensure that these strings are
generated by only one of A and B. Using the rules

S → A | B
A→ abA | abab
B → aBb | λ,

λ and ab are derivable only from the variable B.

34. a) The grammar G was produced in Exercise 33 d) to generate the language {λ} ∪ {aibj |
i > 0, j > 1} unambiguously. A regular expression for this language is a+b+b ∪ λ.

b) To show that G is unambiguous it is necessary to show that there is a unique leftmost
derivation of every string in L(G). The sole derivation of λ is S ⇒ λ. Every other string
in L(G) has the form aibj where i > 0 and j > 1. The derivation of such a string has the
form

Derivation Rule

S =⇒ aA S → aA
i−1
=⇒ aiA A→ aA
=⇒ aibB A→ bB
j−2
=⇒ aibbj−2B B → bB
=⇒ aibbj−2b B → b
= aibj

At each step there is only one rule that can be applied to successfully derive aibj . Initially
the S rule that produces an a must be employed, followed by exactly i − 1 applications
of the rule A→ aA. Selecting the other A rule prior to this point would produce a string
with to few a’s. Using more than i− 1 applications would produce too many a’s.

After the generation of ai, the rule A → bB begins the generation of the b’s. Any
deviation from the pattern in the derivation above would produce the wrong number
of b’s. Consequently, there is only one leftmost derivation of aibj and the grammar is
unambiguous.

SOLUTIONS TO EXERCISES 17

39. a) The rules S → aABb, A → aA, and B → bB of G1 are produced by the derivations
S ⇒ AABB ⇒ aABB ⇒ aABb, A⇒ AA⇒ aA, and B ⇒ BB ⇒ bB using the rules of
G2. Thus every rule of G1 is either in G2 or derivable in G2.

Now if w is derivable in G1, it is also derivable in G2 by replacing the application of a rule
of G1 by the sequence of rules of G2 that produce the same transformation. If follows the
L(G1) ⊆ L(G2.

b) The language of G1 is aa+b+b. Since the rules

A→ AA | a

generate a+ and
B → BB | b

generate b+, the language of G2 is a+a+b+b+ = aa+b+b.

40. A regular grammar is one with rules of the form A→ aB, A→ a, and A→ λ, where A,B ∈ V
and a ∈ Σ. The rules of a right-linear grammar have the form A → λ, A → u, and A → uB,
where A,B ∈ V and u ∈ Σ+. Since every regular grammar is also right-linear, all regular
languages are generated by right-linear grammars.

We now must show that every language generated by a right-linear grammar is regular. Let G
be a right-linear grammar. A regular grammar G′ that generates L(G) is constructed from the
rules of G. Rules of the form A → aB, A → a and A → λ in G are also in G′. A right-linear
rule A→ a1 . . . an with n > 1 is transformed into a sequence of rules

A→ a1T1

T1 → a2T2

...
Tn−1 → an

where Ti are variables not occurring in G. The result of the application of the A→ u of G is
obtained by the derivation

A⇒ a1T1 ⇒ · · · ⇒ a1 . . . an−1Tn−1 ⇒ a1 . . . an

in G′.

Similarly, rules of the form A → a1 . . . anB, with n > 1, can be transformed into a sequence
of rules as above with the final rule having the form Tn−1 → anB. Clearly, the grammar G′

constructed in this manner generates L(G).

18 CHAPTER 3. CONTEXT-FREE GRAMMARS

Chapter 4

Normal Forms for Context-Free
Grammars

3. An equivalent essentially noncontracting grammar GL with a nonrecursive start symbol is
constructed following the steps given in the proof of Theorem 4.2.3. Because S is recursive, a
new start symbol S′ and the rule S′ → S are added to GL.

The set of nullable variables is {S ′, S,A,B}. All possible derivations of λ from the nullable
variables are eliminated by the addition of five S rules, one A rule, and one B rule. The
resulting grammar is

S′ → S | λ
S → BSA | BS | SA | BA | B | S | A
B → Bba | ba
A→ aA | a

8. Following the technique of Example 4.3.1, an equivalent grammar GC that does not contain
chain rules is constructed. For each variable, Algorithm 4.3.1 is used to obtain the set of
variables derivable using chain rules.

CHAIN(S) = {S,A,B,C}
CHAIN(A) = {A,B,C}
CHAIN(B) = {B,C,A}
CHAIN(C) = {C,A,B}

These sets are used to generate the rules of GC according to the technique of Theorem 4.3.3,
producing the grammar

S → aa | bb | cc
A→ aa | bb | cc
B → aa | bb | cc
C → aa | bb | cc

In the grammar obtained by this transformation, it is clear that the A, B, and C rules do not
contribute to derivations of terminal strings.

19

20 CHAPTER 4. NORMAL FORMS

15. An equivalent grammar GU without useless symbols is constructed in two steps. The first step
involves the construction of a grammar GT that contains only variables that derive terminal
strings. Algorithm 4.4.2 is used to construct the set TERM of variables which derive terminal
strings.

Iteration TERM PREV

0 {D,F,G} -
1 {D,F,G,A} {D,F,G}
2 {D,F,G,A, S} {D,F,G,A}
3 {D,F,G,A, S} {D,F,G,A, S}

Using this set, GT is constructed.

VT = {S,A,D, F,G}
ΣT = {a, b}
PT : S → aA

A→ aA | aD
D → bD | b
F → aF | aG | a
G→ a | b

The second step in the construction of GU involves the removal of all variables from GT that
are not reachable from S. Algorithm 4.4.4 is used to construct the set REACH of variables
reachable from S.

Iteration REACH PREV NEW

0 {S} ∅ -
1 {S,A} {S} {S}
2 {S,A,D} {S,A} {A}
3 {S,A,D} {S,A,D} {D}

Removing all references to variables in the set VT − REACH produces the grammar

VU = {S,A,D}
ΣU = {a, b}
PU : S → aA

A→ aA | aD
D → bD | b

19. To convert G to Chomsky normal form, we begin by transforming the rules of G to the form
S → λ, A→ a, or A→ w where w is a string consisting solely of variables.

S → XAY B | ABC | a
A→ XA | a
B → Y BZC | b
C → XY Z
X → a
Y → b
Z → c

SOLUTIONS TO EXERCISES 21

The transformation is completed by breaking each rule whose right-hand side has length greater
than 2 into a sequence of rules of the form A→ BC.

S → XT1 | AT3 | a
T1 → AT2

T2 → Y B
T3 → BC
A→ XA | a
B → Y T4 | b
T4 → BT5

T5 → ZC
C → XT6

T6 → Y Z
X → a
Y → b
Z → c

24. a) The derivation of a string of length 0, S ⇒ λ, requires one rule application.

A string of length n > 0 requires 2n− 1; n− 1 rules of the form A→ BC and n rules of
the form A→ a.

b) The maximum depth derivation tree for a string of length 4 has the form

S

A

AA

AA a

a

A

aa

Generalizing this pattern we see that the maximum depth of the derivation tree of a string
of length n > 0 is n. The depth of the derivation tree for the derivation of λ is 1.

c) The minimum depth derivation tree of a string of length 4 has the form

S

A

AA

a a a

A A

A

a

Intuitively, the minimum depth is obtained when the tree is the “bushiest” possible. The
minimum depth of a derivation tree for a string of length n > 0 is dlg(n) + 1e.

28. To obtain an equivalent grammar with no direct left recursion, the rule modification that
removes direct left recursion is applied to the A and B rules producing

S → A | C
A→ BX | aX | B | a
X → aBX | aCX | aB | aC

22 CHAPTER 4. NORMAL FORMS

B → CbY | Cb
Y → bY | b
C → cC | c

The application of an A rule generates B or a and the X rule produces elements of the form
described by (aB ∪ aC)+ using right recursion.

Similarly, the B and Y rules produce Cbb∗ using the right recursive Y rule to generate b+.

32. The transformation of a grammar G from Chomsky normal form to Greibach normal form is
accomplished in two phases. In the first phase, the variables of the grammar are numbered
and an intermediate grammar is constructed in which the first symbol of the right-hand side
of every rule is either a terminal or a variable with a higher number than the number of the
variable on the left-hand side of the rule. This is done by removing direct left recursion and
by applying the rule replacement schema of Lemma 4.1.3. The variables S, A, B, and C are
numbered 1, 2, 3, and 4 respectively. The S rules are already in the proper form. Removing
direct left recursion from the A rules produces the grammar

S → AB | BC
A→ aR1 | a
B → AA | CB | b
C → a | b
R1 → BR1 | B

Applying the rule transformation schema of Lemma 4.1.3, the rule
B → AA can be converted into the desired form by substituting for the first A, resulting
in the grammar

S → AB | BC
A→ aR1 | a
B → aR1A | aA | CB | b
C → a | b
R1 → BR1 | B

The second phase involves transformation of the rules of the intermediate grammar to en-
sure that the first symbol of the right-hand side of each rule is a terminal symbol. Working
backwards from the C rules and applying Lemma 4.1.3, we obtain

S → aR1B | aB | aR1AC | aAC | aBC | bBC | bC
A→ aR1 | a
B → aR1A | aA | aB | bB | b
C → a | b
R1 → BR1 | B

Finally, Lemma 4.1.3 is used to transform the R1 rules created in the first phase into the
proper form, producing the Greibach normal form grammar

S → aR1B | aB | aR1AC | aAC | aBC | bBC | bC
A→ aR1 | a
B → aR1A | aA | aB | bB | b
C → a | b
R1 → aR1AR1 | aAR1 | aBR1 | bBR1 | bR1

→ aR1A | aA | aB | bB | b

SOLUTIONS TO EXERCISES 23

35. We begin by showing how to reduce the length of strings on the right-hand side of the rules
of a grammar in Greibach normal form. Let G = (V, Σ, S, P) be a grammar in Greibach
normal form in which the maximum length of the right-hand side of a rule is n, where n is any
natural number greater than 3. We will show how to transform G to a Greibach normal form
grammar G′ in which the right-hand side of each rule has length at most n− 1.

If a rule already has the desired form, no change is necessary. We will outline the approach
to transform a rule of the form A → aB2 · · ·Bn−1Bn into a set of rules of the desired form.
The procedure can be performed on each rule with right-hand side of length n to produce a
grammar in which the right-hand side of each rule has length at most n− 1.

A new variable [Bn−1Bn] is added to grammar and the rule

A→ aB2 · · ·Bn−1Bn

is replaced with the rule
A→ aB2 · · ·Bn−2[Bn−1Bn]

whose right-hand side has length n − 1. It is now necessary to define the rules for the new
variable [Bn−1Bn]. Let the Bn−1 rules of G be

Bn−1 → β1u1 | β1u2 | · · · | βmum,

where βi ∈ Σ, ui ∈ V∗, and length(βiui) ≤ n. There are three cases to consider in creating
the new rules.

Case 1: length(βiui) ≤ n− 2. Add the rule

[Bn−1Bn]→ βiuiBn

to G′.

Case 2: length(βiui) = n−1. In this case, the Bn−1 rule can be written Bn−1 → βiC2 · · ·Cn−1.
Create a new variable [Cn−1Bn] and add the rule

Bn−1 → βiC2 · · ·Cn−2[Cn−1Bn]

to G′.

Case 3: length(βiui) = n. In this case, the Bn−1 rule can be written Bn−1 → βiC2 · · ·Cn−1Cn.
Create two new variables [Cn−2Cn−1] and [CnBn] and add the rule

Bn−1 → βiC2 · · ·Cn−3[Cn−2Cn−1][CnBn]

to G′.

Each of the rules generated in cases 1, 2, and 3 have right-hand sides of length n − 1. The
process must be repeated until rules have been created for each variable created by the rule
transformations.

The construction in case 3 requires the original rule to have at least three variables. This
length reduction process can be repeated until each rule has a right-hand side of length at
most 3. A detailed proof that this construction produces an equivalent grammar can be found
in Harrison1.

1M. A. Harrison, Introduction to Formal Languages, Addison-Wesley, 1978

24 CHAPTER 4. NORMAL FORMS

Chapter 5

Finite Automata

1. a) The state diagram of M is

q1

b

aq0
b

a ab

q2

b) i) [q0, abaa] ii) [q0, bbbabb]
` [q0, baa] ` [q1, bbabb]
` [q1, aa] ` [q1, babb]
` [q2, a] ` [q1, abb]
` [q2, λ] ` [q2, bb]

` [q0, b]
` [q1, λ]

iii) [q0, bababa] iv) [q0, bbbaa]
` [q1, ababa] ` [q1, bbaa]
` [q2, baba] ` [q1, baa]
` [q0, aba] ` [q1, aa]
` [q0, ba] ` [q2, a]
` [q1, a] ` [q2, λ]
` [q2, λ]

c) The computations in (i), (iii), and (iv) terminate in the accepting state q2. Therefore,
the strings abaa, bababa, and bbbaa are in L(M).

d) Two regular expressions describing L(M) are a∗b+a+(ba∗b+a+)∗ and (a∗b+a+b)∗a∗b+a+.

4. The proof is by induction on length of the input string. The definitions of δ̂ and δ̂′ are the
same for strings of length 0 and 1.

Assume that δ̂(qi, u) = δ̂′(qi, u) for all strings u of length n or less. Let w = bva be a string of
length of n+ 1, with a, b ∈ Σ and length(v) = n− 1.

25

26 CHAPTER 5. FINITE AUTOMATA

δ̂(qi, w) = δ̂(qi, bva)

= δ(δ̂(qi, bv), a) (definition of δ̂)

= δ(δ̂′(qi, bv), a) (inductive hypothesis)

= δ(δ̂′(δ(qi, b), v), a) (definition of δ̂′)

Similarly,

δ̂′(qi, w) = δ̂′(qi, bva)

= δ̂′(δ(qi, b), va) (definition of δ̂′)

= δ̂(δ(qi, b), va) (inductive hypothesis)

= δ(δ̂(δ(qi, b), v), a) (definition of δ̂)

= δ(δ̂′(δ(qi, b), v), a) (inductive hypothesis)

Thus δ̂(qi, w) = δ̂′(qi, w) for all strings w ∈ Σ∗ as desired.

5. The DFA

c

c

b

a

a
c

q2

b

a,b,c

a,b

q1q0

q3

that accepts a∗b∗c∗ uses the loops in states q0, q1, and q2 to read a’s, b’s, and c’s. Any
deviation from the prescribed order causes the computation to enter q3 and reject the string.

8. A DFA that accepts the strings over {a, b} that do not contain the substring aaa is given by
the state diagram

a

b

b

a aq2q1q0

b a,b

q3

The states are used to count the number of consecutive a’s that have been processed. When
three consecutive a’s are encountered, the DFA enters state q3, processes the remainder of the
input, and rejects the string.

SOLUTIONS TO EXERCISES 27

15. The DFA

q0

q4

q1
a

aq2

a

a

a,b,cb,c b,c b,c b,c

q3

accepts strings of even length over {a, b, c} that contain exactly one a. A string accepted by
this machine must have exactly one a and the total number of b’s and c’s must be odd. States
q1 or q3 are entered upon processing a single a. The state q3 represents the combination of the
two conditions required for acceptance. Upon reading a second a, the computation enters the
nonaccepting state q4 and rejects the string.

20. The states of the machine are used to count the number of symbols processed since an a has
been read or since the beginning of the string, whichever is smaller.

b

a

a
a

b b bq2 q3
q1q0

a a,b

q4

A computation is in state qi if the previous i elements are not a’s. If an input string has a
substring of length four without an a, the computation enters q4 and rejects the string. All
other strings accepted.

21. The DFA to accept this language differs from the machine in Exercise 20 by requiring every
fourth symbol to be an a. The first a may occur at position 1, 2, 3, or 4. After reading the
first a, the computation enters state q4 and checks for a pattern consisting of a combination of
three b’s or c’s followed by an a. If the string varies from this pattern, the computation enters
state q8 and rejects the input.

b,c

b,c

b,c

b,c

b,c
a

a

a

a

aaaa

b,c

q
4

q
5

q
7

q
6

q
1 q

2

b,c

b,c

q
3

q
0

q
8

a,b,c

28 CHAPTER 5. FINITE AUTOMATA

Strings of length 3 or less are accepted, since the condition is vacuously satisfied.

23. a) The transition table for the machine M is

δ a b
q0 {q0, q1} ∅
q1 ∅ {q1, q2}
q2 {q0, q1} ∅

b) [q0, aaabb] [q0, aaabb]
` [q1, aabb] ` [q0, aabb]

` [q1, abb]

[q0, aaabb] [q0, aaabb]
` [q0, aabb] ` [q0, aabb]
` [q0, abb] ` [q0, abb]
` [q1, bb] ` [q0, bb]
` [q1, b]
` [q1, λ]

[q0, aaabb]
` [q0, aabb]
` [q0, abb]
` [q1, bb]
` [q1, b]
` [q2, λ]

c) Yes, the final computation above reads the entire string and halts in the accepting state
q2.

d) A regular expressions for L(M) is a+b+(ab+ ∪ a+ab+)∗. Processing a+b+ leaves the
computation in state q2. After arriving at q2 there are two ways to leave and return,
taking the cycle q0, q1, q2 or the cycle q1, q2. The first path processes a string from
a+ab+ and the second ab+. This expression can be reduced to (a+b+)+.

25. c) The NFA

c

a b

a

q3

q0 q2

q1

a

accepts the language (abc)∗a∗. Strings of the form (abc)∗ are accepted in q0. State q3
accepts (abc)∗a+.

SOLUTIONS TO EXERCISES 29

29. The set of strings over {a, b} whose third to the last symbol is b is accepted by the NFA

q1 q2
a,b a,bq0

b

a,b

q3

When a b is read in state q0, nondeterminism is used to choose whether to enter state q1
or remain in state q0. If q1 is entered upon processing the third to the last symbol, the
computation accepts the input. A computation that enters q1 in any other manner terminates
unsuccessfully.

39. Algorithm 5.6.3 is used to construct a DFA that is equivalent to the NFA M in Exercise 17.
Since M does not contain λ-transitions, the input transition function used by the algorithm is
the transition function of M. The transition table of M is given in the solution to Exercise 17.

The nodes of the equivalent NFA are constructed in step 2 of Algorithm 5.6.3. The generation
of Q′ is traced in the table below. The start state of the determininstic machine is {q0}, which
is the λ-closure of q0. The algorithm proceeds by choosing a state X ∈ Q′ and symbol a ∈ Σ
for which there is no arc leaving X labeled a. The set Y consists of the states that may be
entered upon processing an a from a state in X.

X input Y Q′

Q′ := {{q0}}
{q0} a {q0, q1} Q′ := Q′ ∪ {{q0, q1}}
{q0} b ∅ Q′ := Q′ ∪ {∅}

{q0, q1} a {q0, q1}
{q0, q1} b {q1, q2} Q′ := Q′ ∪ {{q1, q2}}

∅ a ∅
∅ b ∅

{q1, q2} a {q0, q1}
{q1, q2} b {q1, q2}

The accepting state is {q1, q2}. The state diagram of the deterministic machine is

{q0} {q0, q1}

{q1, q2}

b

a

a bb

a

a, b

0/

43. To prove that qm is equivalent to qn we must show that δ̂(qm, w) ∈ F if, and only if, δ̂(qn, w) ∈
F for every string w ∈ Σ∗.

Let w be any string over Σ. Since qi and qj are equivalent, δ̂(qi, uw) ∈ F if, and only if,

δ̂(qj , uw) ∈ F. The equivalence of qm and qn follows since δ̂(qi, uw) = δ̂(qm, w) and δ̂(qn, uw) =

δ̂(qn, w).

30 CHAPTER 5. FINITE AUTOMATA

44. Let δ′([qi], a) = [δ(qi, a)] be the transition function defined on classes of equivalent states of a
DFA and let qi and qj be two equivalent states. To show that δ′ is well defined, we must show
that δ′([qi], a) = δ′([qj], a).

If δ′([qi], a)qm and δ′([qj], a) = qn, this reduces to showing that [qm] = [qn]. However, this
equality follows from the result in Exercise 43.

Chapter 6

Properties of Regular Languages

2. a) This problem illustrates one technique for determining the language of a finite automaton
with more than one accepting. The node deletion algorithm must be employed individu-
ally for each accepting state. Following this strategy, a regular expression is obtained by
deleting nodes from the graphs

a

a
G1

q1

q0

b

q1 q2

G2

b

b

a

b

a
q2

b

b

q0

Deleting q1 and q2 from G1 produces

q0

b

with the corresponding regular expression b∗. Removing q2 from G2 we obtain the ex-
pression graph

q
1

q
0

ab+b

a

accepting b∗a(ab+)∗. Consequently, the original NFA accepts strings of the form b∗ ∪
b∗a(ab+)∗.

5. a) Associating the variables S, A, and B with states q0, q1, and q2 respectively, the regular
grammar

S → aA | λ
A→ aA | aB | bS
B → bA | λ

31

32 CHAPTER 6. PROPERTIES OF REGULAR LANGUAGES

is obtained from the arcs and the accepting states of M.

b) A regular expression for L(M) can be obtained using the node deletion process. Deleting
the state q1 produces the graph

q2q0

a+b ba+

aa*a

ba*b

The set of strings accepted by q2 is described by the regular expression (a+b)∗aa∗a(ba+∪
ba∗b(a+b)∗aa∗a)∗.

By deleting states q2 then q1, we see that q0 accepts (a(a ∪ ab)∗b)∗. The language of
M is the union of the strings accepted by q0 and q2.

6. Let G be a regular grammar and M the NFA that accepts L(G) obtained by the construction
in Theorem 6.3.1. We will use induction on the length of the derivations of G to show that
there is a computation [q0, w] `

∗ [C, λ] in M whenever there is a derivation S
∗
⇒ wC in G.

The basis consists of derivations of the form S ⇒ aC using a rule S → aC. The rule produces
the transition δ(q0, a) = C in M and the corresponding derivation is [q0, a] ` [C, λ] as desired.

Now assume that [q0, w] `
∗ [C, λ] whenever there is a derivation S

n
⇒ wC.

Let S
∗
⇒ wC be a computation of length n+ 1. Such a derivation can be written

S
n
⇒ uB

uaC,

where B → aC is a rule of G. By the inductive hypothesis, there is a computation [q0, u] `
∗ [B, λ]. Combining the transition δ(a,B) = C obtained from the rule B → aC with the
preceding computation produces

[q0, w] = [q0, ua]

`∗ [B, a]

` [C, λ]

as desired.

7. a) Let L be any regular language over {a, b, c} and let L′ be the language consisting of
all strings over {a, b, c} that end in aa. L′ is regular since it is defined by the regular
expression (a ∪ b ∪ c)∗aa. The set

L ∩ L′ = {w | w ∈ L and w contains an a},

which consists of all strings in L that end with aa, is regular by Theorem 6.4.3.

11. a) Let G = (V, Σ, S, P) be a regular grammar that generates L. Without loss of generality,
we may assume that G does not contain useless symbols. The algorithm to remove useless
symbols, presented in Section 4.4, does not alter the form of rules of the grammar. Thus
the equivalent grammar obtained by this transformation is also regular.

Derivations in G have the form S
∗
⇒ uA

∗
⇒ uv where u, v ∈ Σ∗. A grammar G′ that

generates P = {u | uv ∈ L}, the set of prefixes of L, can be constructed by augmenting
the rules of G with rules A → λ for every variable A ∈ V. The prefix u is produced by
the derivation S

∗
⇒ uA⇒ u in G′.

SOLUTIONS TO EXERCISES 33

12. A DFA M′ that accepts the language L′ can be constructed from a DFA M = (Q, Σ, δ, q0, F)
that accepts L. The states of M′ are ordered pairs of the form [qi,X], where qi ∈ Q and X is a
subset of Q. Intuitively (but not precisely), the state qi represents the number of transitions
from the start state when processing a string and the set X consists of states that require the
same number of transitions to reach an accepting state.

The construction of the states Q′ and the transition function δ′ of M′ is iterative. The start
state of the machine is the ordered pair [q0,F]. For each state [qi,X] and symbol a such that
δ([qi,X], a) is undefined, the transition is created by the rule

δ([qi,X], a) = [qi(a),Y],

where Y = {qj | δ(qj , a) ∈ X}. If it is not already in Q′, the ordered pair [qi(a),Y] is added
to the states of M′. The process is repeated until a transition is defined for each state-symbol
pair.

A state [qi,X] is accepting if qi ∈ X. Back to the intuition, this occurs when the number of
transitions from the start state is the same as the number of transitions needed to reach an
accepting state. That is, when half of a string in L has been processed.

13. b) To show that the set P of even length palindromes is not regular, it suffices to find
sequences of strings ui and vi, i = 0, 1, 2, . . . , from {a, b}∗ that satisfy

i) uivi ∈ P, for i ≥ 0

ii) uivj 6∈ P whenever i 6= j.

Let ui = aib and vi = bai. Then uivi is the palindrome aibbai. For i 6= j, the string
uivj = aibbaj is not in P. We conclude, by Corollary 6.5.2, that P is not regular.

14. b) Assume that L = {anbm | n < m} is regular. Let k be the number specified by the
pumping lemma and z be the string akbk+1. By the pumping lemma, z can be written
uvw where

i) v 6= λ

ii) length(uv) ≤ k

iii) uviw ∈ L for all i ≥ 0.

By condition (ii), v consists solely of a’s. Pumping v produces the string uv2w that
contains at least as many a’s as b’s. Thus uv2w 6∈ L and L is not regular.

e) The language L consists of strings of the form λ, a, ab, aba, abaa, abaab, and so forth.
Assume that L is regular and let z = abaab · · · bak−1bakb, where k is the number specified
by the pumping lemma. We will show that there is no decomposition z = uvw in which
v satisfies the conditions of the pumping lemma.

The argument utilizes the number of b’s in the substring v. There are three cases to
consider.

Case 1: v has no b’s. In this case, the string uv0w has consecutive sequences of a’s in
which the second sequence has at most the same number of a’s as its predecessor. Thus
uv0w 6∈ L.

Case 2: v has one b. In this case, v has the form asbat and is obtained from a substring
bajbaj+1b in z. The string uv2w obtained by pumping v has a substring bajbas+tbaj+1b,
which does not follow pattern of increasing the number of a’s by one in each subsequent
substring of a’s. Thus uv2w 6∈ L.

Case 3: v has two or more b’s. In this case, v contains a substring batb. Pumping v
produces two substrings of the form batb in uv2w. Since no string in L can have two
distinct substrings of this form, uv2w 6∈ L.

34 CHAPTER 6. PROPERTIES OF REGULAR LANGUAGES

Thus there is no substring of z that satisfies the conditions of the pumping lemma and
we conclude the L is not regular.

17. b) Let L1 be a nonregular language and L2 be a finite language. Since every finite language
is regular, L1 ∩ L2 is regular. Now assume that L1 − L2 is regular. By Theorem 6.4.1,

L1 = (L1 − L2) ∪ (L1 ∩ L2)

is regular. But this is a contradiction, and we conclude that L1 − L2 is not regular. This
result shows that a language cannot be “a little nonreguar”; removing any finite number
of elements from a nonregular set cannot make it regular.

18. a) Let L1 =a∗b∗ and L2 = {aibi | i ≥ 0}. Then L1 ∪ L2 = L1, which is regular.

b) In a similar manner, let L1 = ∅ and L2 = {aibi | i ≥ 0}. Then L1 ∪ L2 = L2, which is
nonregular.

19. a) The regular languages over a set Σ are constructed using the operations union, concate-
nation, and Kleene star. We begin by showing that these set operations are preserved by
homomorphisms. That is, for sets X and Y and homomorphism h

i) h(XY) = h(X)h(Y)

ii) h(X ∪ Y) = h(X) ∪ h(Y)

iii) h(X∗) = h(X)∗.

The set equality h(XY) = h(X)h(Y) can be obtained by establishing the inclusions h(XY)
⊆ h(X)h(Y) and h(X)h(Y) ⊆ h(XY).

Let x be an element of h(XY). Then x = h(uv) for some u ∈ X and v ∈ Y. Since h is a
homomorphism, x = h(u)h(v) and x ∈ h(X)h(Y). Thus h(XY) ⊆ h(X)h(Y). To establish
the opposite inclusion, let x be an element in h(X)h(Y). Then x = h(u)h(v) for some u ∈
X and v ∈ Y. As before, x = h(uv) and h(X)h(Y) ⊆ h(XY). The other two set equalities
can be established by similar arguments.

Now let Σ1 and Σ2 be alphabets, X a language over Σ1, and h a homomorphism from Σ∗1
to Σ∗2. We will use the recursive definition of regular sets to show that h(X) is regular
whenever X is. The proof is by induction on the number of applications of the recursive
step in Definition 2.3.1 needed to generate X.

Basis: The basis consists of regular sets ∅, {λ}, and {a} for every a ∈ Σ1. The ho-
momorphic images of these sets are the sets ∅, {λ}, and {h(a)}, which are regular over
Σ2.

Inductive hypothesis: Now assume that the homomorphic image of every regular set
definable using n or fewer applications of the recursive step is regular.

Inductive step: Let X be a regular set over Σ1 definable by n + 1 applications of the
recursive step in Definition 2.3.1. Then X can be written Y ∪ Z, YZ, or Y∗ where Y and
Z are definable by n or fewer applications. By the inductive hypothesis, h(Y) and h(Z)
are regular. It follows that h(X), which is either h(Y)∪ h(Z), h(Y)h(Z), or h(Y)∗, is also
regular.

21. For every regular grammar G = (V, Σ, S, P) there is a corresponding a left-regular grammar
G′ = (V, Σ, S, P′), defined by

i) A→ Ba ∈ P′ if, and only if, A→ aB ∈ P

ii) A→ a ∈ P′ if, and only if, A→ a ∈ P

iii) A→ λ ∈ P′ if, and only if, A→ λ ∈ P.

SOLUTIONS TO EXERCISES 35

The following Lemma establishes a relationship between regular and left-regular grammars.

Lemma. Let G and G′ be corresponding regular and left-regular grammars. Then L(G′) =
L(G)R.

The lemma can be proven by showing that S
∗
⇒ u in G if, and only if, S

∗
⇒ uR in G′. The

proof is by induction on the length of the derivations.

a) Let L be a language generated by a left-regular grammar G′. By the preceding lemma,
the corresponding regular grammar G generates LR. Since regularity is preserved by
the operation of reversal, (LR)R = L is regular. Thus every language generated by a
left-regular grammar is regular.

b) Now we must show that every regular language is generated by a left-regular grammar.
If L is a regular language, then so is LR. This implies that there is a regular grammar G
that generates LR. The corresponding left-regular grammar G′ generates (LR)R = L.

29. The ≡M equivalence class of a state qi consists of all strings for which the computation of M
halts in qi. The equivalence classes of the DFA in Example 5.3.1 are

state equivalence class
q0 (a ∪ ba)∗

q1 a∗b(a+b)∗

q2 a∗b(a+b)∗b(a ∪ b)∗

31. Let M = (Q, Σ, δ, q0, F) be the minimal state DFA that accepts a language L as constructed
by Theorem 6.7.4 and let n be the number of states of M. We must show that any other DFA
M′ with n states that accepts L is isomorphic to M.

By Theorem 6.7.5, the ≡M equivalence classes of the states M are identical to the ≡L equiv-
alence classes of the language L.

By the argument in Theorem 6.7.5, each ≡M′ equivalence class is a subset of a ≡L equivalence
class. Since there are same number of ≡M′ and ≡L equivalence classes, the equivalence classes
defined by L and M′ must be identical.

The start state in each machine is the state associated with [λ]≡L
. Since the transition function

can be obtained from the ≡L equivalence classes as outlined in Theorem 6.7.4, the transition
functions of M and M′ are identical up to the names given to the states.

36 CHAPTER 6. PROPERTIES OF REGULAR LANGUAGES

Chapter 7

Pushdown Automata and
Context-Free Languages

1. a) The PDA M accepts the language {aibj | 0 ≤ j ≤ i}. Processing an a pushes A onto the
stack. Strings of the form ai are accepted in state q1. The transitions in q1 empty the
stack after the input has been read. A computation with input aibj enters state q2 upon
processing the first b. To read the entire input string, the stack must contain at least j
A’s. The transition δ(q2, λ, A) = [q2, λ] will pop any A’s remaining on the stack.

The computation for an input string that has fewer a’s than b’s or in which an a occurs
after a b halts in state q2 without processing the entire string. Thus strings with either
of these forms are rejected.

b) The state diagram of M is

q2q1
λ λ /λ

b A /λ

λ A/λ λ A/λ
b A /λ

a λ /A

q0

d) To show that the strings aabb and aaab are in L(M), we trace a computation of M that
accepts these strings.

State String Stack
q0 aabb λ
q0 abb A
q0 bb AA
q2 b A
q2 λ λ

State String Stack
q0 aaab λ
q0 aab A
q0 ab AA
q0 b AAA
q2 λ AA

37

38 CHAPTER 7. PUSHDOWN AUTOMATA

q2 λ A
q2 λ λ

Both of these computations terminate in the accepting state q2 with an empty stack.

3. d) The pushdown automaton defined by the transitions

δ(q0, λ, λ) = {[q1, C]}
δ(q1, a, A) = {[q2, A]}
δ(q1, a, C) = {[q2, C]}
δ(q1, b, B) = {[q3, B]}
δ(q1, b, C) = {[q3, C]}
δ(q1, a, B) = {[q1, λ]}
δ(q1, b, A) = {[q1, λ]}
δ(q1, λ, C) = {[q5, λ]}
δ(q2, λ, λ) = {[q1, A]}
δ(q3, λ, λ) = {[q4, B]}
δ(q4, λ, λ) = {[q1, B]}

accepts strings that have twice as many a’s as b’s. A computation begins by pushing a C
onto the stack, which serves as a bottom-marker throughout the computation. The stack
is used to record the relationship between the number of a’s and b’s scanned during the
computation. The stacktop will be a C when the number of a’s processed is exactly twice
the number of b’s processed. The stack will contain n A’s if the automaton has read n
more a’s than b’s. If n more b’s than a’s have been read, the stack will hold 2n B’s.

When an a is read with an A or C on the top of the stack, an A is pushed onto the stack.
This is accomplished by the transition to q2. If a B is on the top of the stack, the stack
is popped removing one b. If a b is read with a C or B on the stack, two B’s are pushed
onto the stack. Processing a b with an A on the stack pops the A.

The lone accepting state of the automaton is q5. If the input string has the twice as many
a’s as b’s, the transition to q5 pops the C, terminates the computation, and accepts the
string.

h) The language L = {aibj | 0 ≤ i ≤ j ≤ 2 · i} is generated by the context-free grammar

S → aSB | λ
B → bb | b

The B rule generates one or two b’s for each a. A pushdown automaton M that accepts L
uses the a’s to record an acceptable number of matching b’s on the stack. Upon processing
an a, the computation nondeterministically pushes one or two A’s onto the stack. The
transitions of M are

δ(q0, a, λ) = {[q1, A]}
δ(q0, λ, λ) = {[q3, λ]}
δ(q0, a, λ) = {[q0, A]}
δ(q0, b, A) = {[q2, λ]}
δ(q1, λ, λ) = {[q0, A]}
δ(q2, b, A) = {[q2, λ]}.

The states q2 and q3 are the accepting states of M. The null string is accepted in q3. For
a nonnull string aibj ∈ L, one of the computations will push exactly j A’s onto the stack.
The stack is emptied by processing the b’s in q2.

The state diagram of the PDA is

SOLUTIONS TO EXERCISES 39

q2

q3

λ λ /λ
b A /λ

b A /λa λ /A

a λ /A
q0 q1

λ λ /A

8. Let M = (Q, Σ, Γ, δ, q0, F) be a PDA that accepts L by final state and empty stack. We
construct a PDA M′ = (Q∪{qs, qf}, Σ, Γ∪{C}, δ

′, qs, {qf}) from M by adding a new stack
symbol C, new states qs and qf , and transitions for these states. The transition function δ′ is
constructed by augmenting δ with the transitions

δ′(qi, λ, C) = {[qf , λ]} for all qi ∈ F

δ′(qs, λ, λ) = {[q0, C]}

Let w be a string accepted by M in an accepting state qi. A computation of M′ with input
w begins by putting C on the stack and entering q0. The stack symbol C acts as a marker
designating the bottom of the stack. From q0, M

′ continues with a computation identical to
that of M with input w. If the computation of M with w ends in an accepting state qi with an
empty stack, the computation of M′ is completed by the λ-transition from qi to qf that pops
the C from the stack. Since the computation of M′ halts in qf , w ∈ L(M′).

We must also guarantee that the any string w accepted by M′ by final state is accepted by M
by final state and empty stack. The lone final state of M′ is qf , which can be entered only by
a λ-transition from a final state qi of M with C as the stacktop. Thus the computation of M′

must have the form

[qs, w, λ]

` [q0, w, C]

`∗ [qi, λ, C]

` [qf , λ, λ]

Deleting the first and last transition provides a computation of M that accepts w by final state
and empty stack.

12. The state diagram for the extended PDA obtained from the grammar is

q1 b A /λ
c B /λ

c B /B
b A /A

a λ /ABA
a λ /BB

q0

16. Let M = (Q, Σ, Γ, δ, q0, F) be an extended PDA. We will outline the construction of a context-
free grammar that generates L(M). The steps follow precisely those given in Theorem 7.3.2,
except we begin with extended transitions rather than standard transitions.

The first step is to construct an equivalent PDA M′ with transition function δ′ by augmenting
δ with the transitions:

[qj , B1 · · ·BnA] ∈ δ′(qi, u,B1 · · ·BnA) for every A ∈ Γ,

40 CHAPTER 7. PUSHDOWN AUTOMATA

whenever [qj , λ] ∈ δ(qi, u,B1 · · ·Bn) is a transition of M. The string of variables B1 · · ·Bn in
the preceding rules may be empty.

These rules transform a transition of M that does not remove an element from the stack into
one that initially pops the stack and later replaces the same symbol on the top of the stack.
Any string accepted by a computation that utilizes a new transition can also be obtained by
applying the original transition; hence, L(M) = L(M′).

A grammar G = (V, Σ, P, S) is constructed from the transitions of M′. The alphabet of G
is the input alphabet of M′. The variables of G consist of a start symbol S and objects of
the form 〈qi, A, qj〉 where the q’s are states of M′ and A ∈ Γ ∪ {λ}. The variable 〈qi, A, qj〉
represents a computation that begins in state qi, ends in qj , and removes the symbol A from
the stack. The rules of G are constructed as follows:

1. S → 〈q0, λ, qj〉 for each qj ∈ F.

2. Each transition [qj , B1 · · ·Bn] ∈ δ
′(qi, x, A), where A ∈ Γ∪{λ}, generates the set of rules

{〈qi, A, qk〉 → x〈qj , B1, qm1
〉〈qm1

, B2, qm2
〉 · · · 〈qmn−1

, Bm, qk〉 | qmi
, qk ∈ Q}.

3. Each transition [qj , B1 · · ·BnA] ∈ δ′(qi, x, A), where A ∈ Γ, generates the set of rules

{〈qi, A, qk〉 → x〈qj , B1, qm1
〉〈qm1

, B2, qm2
〉 · · · 〈qmn−1

, Bm, qmn
〉〈qmn

, A, qk〉 | qk, qmi
∈ Q}.

4. For each state qk ∈ Q,
〈qk, λ, qk〉 → λ.

A derivation begins with a rule of type 1 whose right-hand side represents a computation that
begins in state q0, ends in a final state, and terminates with an empty stack, in other words, a
successful computation in M′. Rules of types 2 and 3 trace the action of the machine. Rules
of type 4 are used to terminate derivations. The rule 〈qk, λ, qk〉 → λ represents a computation
from a state qk to itself that does not alter the stack, that is, the null computation.

The proof that the rules generate L(M) follows the same strategy as Theorem 7.3.2. Lemmas
7.3.3 and 7.3.4 relate the derivations from a variable 〈qi, A, qk〉 to computations of M.

17. a) Assume that language L consisting of strings over {a} whose lengths are a perfect square
is context-free. By the pumping lemma, there is a number k such that every string in L
with length k or more can be written uvwxy where

i) length(vwx) ≤ k

ii) v and x are not both null

iii) uviwxiy ∈ L, for i ≥ 0.

The string ak2

must have a decompositon uvwxy that satisfies the preceding conditions.
Consider the length of the string z = uv2wx2y obtained by pumping uvwxy.

length(z) = length(uv2wx2y)

= length(uvwxy) + length(u) + length(v)

= k2 + length(u) + length(v)

≤ k2 + k

< (k + 1)2

Since the length of z is greater than k2 but less than (k + 1)2, we conclude that z 6∈ L
and that L is not context-free.

SOLUTIONS TO EXERCISES 41

f) Assume that the language L consisting of prefixes of the string

abaabaaabaaaab . . . banban+1b . . .

is context-free and let k be the number specified by the pumping lemma. Consider the
string z = abaab · · · bakb, which is in the language and has length greater than k. Thus z
can be written uvwxy where

i) length(vwx) ≤ k

ii) v and x are not both null

iii) uviwxiy ∈ L, for i ≥ 0.

To show that the assumption that L is context-free produces a contradiction, we examine
all possible decompositions of z that satisfy the conditions of the pumping lemma. By
(ii), one or both of v and x must be nonnull. In the following argument we assume that
v 6= λ.

Case 1: v has no b’s. In this case, v consists solely of a’s and lies between two consecutive
b’s. That is, v occurs in z in a position of the form

. . . banbaivajban+2b . . .

where i+ length(v)+j = n+1. Pumping v produces an incorrect number of a’s following
banb and, consequently, the resulting string is not in the language.

Case 2: v has two or more b’s. In this case, v contains a substring banb. Pumping v
produces a string with two substrings of the form banb. No string with this property is
in L.

Case 3: v has one b. Then v can be written aibaj and occurs in z as

. . . ban−1ban−ivan+1−jb

Pumping v produces the substring

. . . ban−1ban−iaibajaibajan+1−jb . . . = . . . ban−1banbaj+iban+1b . . . ,

which cannot occur in a string in L.

Regardless of its makeup, pumping any nonnull substring v of z produces a string that is
not in the language L. A similar argument shows that pumping x produces a string not
in L whenever x is nonnull. Since one of v or x is nonnull, there is no decomposition of z
that satisfies the requirements of the pumping lemma and we conclude that the language
is not context-free.

18. a) The language L1 = {aib2icj | i, j ≥ 0} is generated by the context-free grammar

S → AC
A→ aAbb | λ
C → cC | λ

b) Similarly, L2 = {ajbic2i | i, j ≥ 0} is generated by

S → AB
A→ aA | λ
B → bBcc | λ

42 CHAPTER 7. PUSHDOWN AUTOMATA

c) Assume L1 ∩ L2 = {aib2ic4i | i ≥ 0} is context-free and let k be the number specified by
the pumping lemma. The string z = akb2·kc4·k must admit a decomposition uvwxy that
satisfies the conditions of the pumping lemma. Because of the restriction on its length,
the substring vwx must have the form ai, bi, ci, aibj , or bicj . Pumping z produces the
string uv2wx2y. This operation increases the number of at least one, possibly two, but
not all three types of terminals in z. Thus uv2wx2y 6∈ L, contradicting the assumption
that L is context-free.

20. Let z be any string of length 2 or more in L. Then z can be written in the form z = pabq or
z = pbaq, where p and q are strings from Σ∗. That is, z must contain the substring ab or the
substring ba. A decomposition of z that satisfies the pumping lemma for z = pabq is

u = p, v = ab, w = λ, x = λ, y = q

A similar decomposition can be produced for strings of the form pbaq.

22. Let L be a linear language. Then there is a linear grammar G = (V, Σ, S, P) that generates
L and, by Theorem 4.3.3, we may assume that G has no chain rules. Let r by the number of
variables of G and t be the maximum number of terminal symbols on the right-hand of any
rule. Any derivation that produces a string of length k = (r + 1)t or more must have at least
r + 1 rule applications. Since there are only r variables, variable that is transformed on the
r + 1st rule application must have occurred previously in the derivation.

Thus any derivation of a string z ∈ L of length greater than k can be written

S
∗
⇒ uAy
∗
⇒ uvAxy
∗
⇒ uvwxy,

where the second occurrence of A in the preceding derivation is the r + 1st rule application.
Repeating the subderivation A

∗
⇒ vAx i times prior to completing the derivation with the

subderivation A
∗
⇒ w produces a string uviwxiy in L.

Since the sentential form uvAxy is generated by at most r rule applications, the string uvxy
must have length less than k as desired.

26. Let G = (V, Σ, S, P) be a context-free grammar. A grammar G′ that generates L(G)R is built
from G. The variables, alphabet, and start symbol of G′ are the same as those of G. The rules
of G′ are obtained by reversing the right-hand of the rules of G; A→ wR ∈ P′ if, and only if,
A→ w ∈ P.

Induction on the length of derivations is used to show that a string u is a sentential form of G
if, and only if, uR is a sentential form of G′. We consider sentential forms of G generated by
leftmost derivations and of G′ by rightmost derivations.

Basis: The basis consists of sentential forms produced by derivations of length one. These are
generated by the derivation S ⇒ u in G and S ⇒ uR in G′ where S → u is a rule in P.

Inductive hypothesis: Assume that u is a sentential form of G derivable by n or fewer
rule applications if, and only if, uR is a sentential form of G′ derivable by n or fewer rule
applications.

Inductive step: Let u be a sentential form of G derived by n + 1 rule applications. The
derivation has the form

S
n
⇒ xAy ⇒ xwy = u

SOLUTIONS TO EXERCISES 43

where A is the leftmost variable in xAy and A→ w is a rule in P.

By the inductive hypothesis, yRAxR is a sentential form of G′ derivable by n rule applications.
Using the rule A→ wR in P′, uR is derivable by the rightmost derivation

S
n
⇒ yRAxR ⇒ yRwRxR = uR.

In a like manner, we can prove that the reversal of every sentential form derivable in G′ is
derivable in G. It follows that L(G′) = L(G)R.

27. Let G = (V, Σ, S, P) be a context-free grammar that generates L and let G′ = (V ∪{X},
Σ − {a}, S, P′ ∪ {X → λ}) be the grammar obtained from G by replacing all occurrences of
the terminal a in the right-hand side of the rules of G with a new variable X. The set of rules
of G′ is completed by adding the rule X → λ. The grammar G′ generates era(L).

The proof follows from a straightforward examination of the derivations of G and G′. For
simplicity, let u : y/x represent a string u ∈ Σ∗ in which all occurrences of the symbol y in u
are replaced by x.

Let u be a string in L. Then there is a derivation S
∗
⇒ u in G. Performing the same derivation

with the transformed rules of G′ yields S
∗
⇒ u : a/X. Completing the derivation with the

rule X → λ produces u : a/λ. Thus, for every u ∈ L, the erasure of u is in L(G′) and
era(L) ⊆ L(G

′
).

Conversely, let u be any string in L(G′). Reordering the rules in the derivation of u so that

applications of the ruleX → λ come last, u is generated by a derivation of the form S
∗
⇒ v

∗
⇒ u.

The subderivation S
∗
⇒ v uses only modified rules of G. Thus v : X/a is in G and u is in era(L).

It follows that L(G
′
) ⊆ era(L).

The two preceding inclusions show that L(G′) = era(L) and consequently that era(L) is
context-free.

28. a) Let L be a context-free language over Σ, G = (V, Σ, S, P) a context-free grammar that
generates L, and h a homomorphism from Σ∗ to Σ∗. We will build a context-free grammar
G′ that generates h(L) = {h(w) | w ∈ L}.

Let Σ = {a1, . . . , an} and h(ai) = xi. The rules of G′ are obtained from those of G by
substitution. If A→ u is a rule of G, then

A→ u : ai/ui, for all i

is a rule of G′. (See the solution to Exercise 27 for an explanation of the notation.)

To show that h(L) is context-free, it suffices to show that it is generated by the grammar
G′. For any string w ∈ L, mimicking its derivation in G using the corresponding rules of
G′ produces h(w). Moreover the derivations in G′ can only produce strings of this form
and L(G

′
) = h(L) as desired.

b) First we note that a mapping h : Σ→ Σ on the elements of the alphabet can be extended
to a homomorphism on Σ∗ as follows: a string u = ai1ai2 · · · aik

maps to the string
h(ai1)h(ai2) · · ·h(aik

).

Using the preceding observation, the mapping on Σ defined by h(a) = λ, h(b) = b, for
all b 6= a, is a homomorphism from Σ∗ to Σ∗. The image of this mapping, which is
context-free by part a), is era(L).

c) The mapping from {aibici | i ≥ 0} that erases the c’s maps a noncontext-free language
to a context-free language.

44 CHAPTER 7. PUSHDOWN AUTOMATA

30. b) Let Σ = {a, b, c} and let h : Σ∗ → Σ∗ be the homomorphism obtained by using concate-
nation to extend the mapping h(a) = a, h(b) = bb, and h(c) = ccc from elements of Σ
to strings over Σ∗. The inverse image of {aib2ic3i | i ≥ 0} under the homomorphism
h is {aibici | i ≥ 0}. In Example 7.4.1, the pumping lemma was used to show that
the latter language is not context-free. Since the class of context-free languages is closed
under inverse homomorphic images (Exercise 29), it follows that {aib2ic3i | i ≥ 0} is not
context-free.

Chapter 8

Turing Machines

1. a) q0BaabcaB b) q0BbcbcB
` Bq1aabcaB ` Bq1bcbcB
` Baq1abcaB ` Bcq1cbcB
` Baaq1bcaB ` Bccq1bcB
` Baacq1caB ` Bcccq1cB
` Baaccq1aB ` Bccccq1B
` Baaccaq1B ` Bcccq2cB
` Baaccq2aB ` Bccq2cbB
` Baacq2ccB ` Bcq2cbbB
` Baaq2cbcB ` Bq2cbbbB
` Baq2abbcB ` q2BbbbbB
` Bq2acbbcB
` q2BccbbcB

c) The state diagram of M is

q1
q2q0

a/a R
b/c R
c/c R

a/c L
c/b L

B/B LB/B R

d) The result of a computation is to replace the a’s in the input string with c’s and the c’s
with b’s.

3. a) Starting with the rightmost symbol in the input and working in a right-to-left manner,
the machine diagrammed below moves each symbol one position to the right.

45

46 CHAPTER 8. TURING MACHINES

q1
qfq0

a/a R
b/b R a/B R

b/B R B/b L

B/a L

B/B LB/B R

B/B L

q2

q4

q3

On reading the first blank following the input, the head moves to the left. If the input
is the null string, the computation halts in state qf with the tape head in position zero
as desired. Otherwise, an a is moved to the right by transitions to states q2 and q3.
Similarly, states q4 and q3 shift a b. This process is repeated until the entire string has
been shifted.

c) A Turing machine to insert blanks between the symbols in the input string can iteratively
use the machine from Exercise 3 a) to accomplish the task. The strategy employed by
the machine is

i. Mark tape position 0 with a #.

ii. If the input string is not empty, change the first symbol to X or Y to record if it was
an a or b, respectively.

iii. Move to the end of the string and use strategy from the machine in part a) to move
the unmarked input on square to the right.

iv. If there are no unmarked symbols on the tape, change all of the X’s to a’s and Y ’s
to b’s, and halt in position 0.

v. Otherwise, repeat the process on the unmarked string.

A Turing machine that accomplishes these tasks is

q1
q2

q9

q10 qf

q3q0

a/a R
b/b R

b/Y R
a/X R

b/b R
a/a R

Y/Y R
X/X R

b/b L
a/a L

Y/b L
X/a L

B/# R

#/B R

B/B L

B/B R

B/B L

B/B L

B/B L

q4

a/B R

b/B R B/b L

B/a L

B/B L

q5

q6

q7

q8

SOLUTIONS TO EXERCISES 47

Processing the null string uses the arc from q1 to qf . Shifting a string one square to the
right is accomplished by states q3 to q7. The arc from q4 to q8 when the shift has been
completed. If another shift is needed, the entire process is repeated by entering q1.

5. c) A computation of

q1
q2

q5

q3q0

b/b R
X/X R

X/X L

b/b L
X/X L

a/X LB/B R

B/B R
B/B L

B/B R

a/a R
X/X R

B/B R q4

a/a L
X/X L

b/X L

q6

begins by finding the first a on the tape and replacing it with an X (state q1). The tape
head is then returned to position zero and a search is initiated for a corresponding b. If a b
is encountered in state q3, an X is written and the tape head is repositioned to repeat the
cycle q1, q2, q3, q4. If no matching b is found, the computation halts in state q3 rejecting
the input. After all the a’s have been processed, the entire string is read in q1 and q5 is
entered upon reading the trailing blank. The computation halts in the accepting state q6
if no b’s remain on the tape.

7. We refer to the method of acceptance defined in the problem as acceptance by entering. We
show that the languages accepted by entering are precisely those accepted by final state, that
is, the recursively enumerable languages.

Let M = (Q, Σ, Γ, δ, q0, F) be a Turing machine that accepts by entering. The machine M′

= (Q, Σ, Γ, δ′, q0, F) with transition function δ′ defined by

i) δ′(qi, x) = δ(qj , x) for all qi 6∈ F

ii) δ′(qi, x) is undefined for all qi ∈ F

accepts L(M) be final state. Computations of M′ are identical to those of M until M′ enters
an accepting state. When this occurs, M′ halts accepting the input. A computation of M that
enters an accepting state halts in that state in M′.

Now let M = (Q, Σ, Γ, δ, q0, F) be a Turing machine that accepts by final state. A computation
of M may enter and leave accepting states prior to termination; the intermediate states have
no bearing on the acceptance of the input. We construct a machine M′ that accepts L(M) by
entering. M′ is defined by the quintuple (Q ∪ {qf}, Σ, Γ, δ′, q0, {qf}). The transitions of M′

are defined by

i) δ′(qi, x) = δ(qi, x) whenever δ(qi, x) is defined

ii) δ′(qi, x) = [qf , x,R] if qi ∈ F and δ(qi, x) is undefined.

A computation of M that accepts an input string halts in an accepting state qi. The corre-
sponding computation of M′ reaches qi and then enters qf , the sole accepting state of M′. Thus
entering qf in M′ is equivalent to halting in an accepting state of M and L(M) = L(M′).

48 CHAPTER 8. TURING MACHINES

8. Clearly, every recursively enumerable language is accepted by a Turing machine in which
stationary transitions are permitted. A standard Turing machine can be considered to be such
a machine whose transition function does not include any stationary transitions.

Let M be a Turing machine (Q, Σ, Γ, δ, q0, F) with stationary transitions. We construct a
standard Turing machine M′ that accepts L(M). The transition function δ′ of M′ is constructed
from that of M. A transition of M that designates a movement of the tape head generates an
identical transition of M′.

i) δ′(qi, x) = δ(qi, x) whenever δ(qi, x) = [qj , y, d] where d ∈ {L,R}

A pair of standard transitions are required to perform the same action as a stationary tran-
sition δ(x, qi) = [qj , y, S]. The first transition prints a y, moves right and enters a new state.
Regardless of the symbol being scanned, the subsequent transition moves left to the original
position and enters qj .

ii) δ′(qi, x) = [qt, y, R] for every transition δ(qi, x) = [qj , y, S], where a new state qt 6∈ Q is is
added for every stationary transition

iii) δ′(qt, z) = [qj , z, L] for every z ∈ Γ and every state qt added in (ii)

10. a) Let M = (Q, Σ, Γ, δ, q0, F) be a standard Turing machine. We will build a context-
sensitive Turing machine M′ that accepts L(M). The components of M′ are the same as
those of M except for the transition function δ′. For every transition δ(qi, x) = [qj , y, d]
of M, M′ has the transitions

δ′(qi, xz) = [qj , yz, d] for all z ∈ Γ.

Intuitively, a computation of M′ ignores the second input symbol in the transition.

b) Assume that the context-sensitive transition function has transitions

δ′(qi, xzi) = [qji
, yizi, d]

for symbols z1, z2, . . . , zn from the tape alphabet. The computation of the standard
machine should read the x in state qi, determine the symbol on the right, and rewrite the
original position accordingly. This can be accomplished using the transitions

δ′(qi, x) = [q′i, x
′, R]

δ′(q′i, z1) = [qi1 , z1, L]

δ′(qi1 , x) = [qj1 , y1, d]

...

δ′(q′i, zn) = [qin
, zn, L]

δ′(qin
, x′) = [qjn

, yn, d]

δ′(q′i, w) = [qi, w, L] for w 6= z

where x′ is a symbol not in tape alphabet of the context-sensitive machine. If the context-
sensitive transition is not applicable, the sequence of standard transitions will check the
symbol to the right and halt in state qi.

c) By part a) we see that every recursively enumerable language is accepted by a context-
sensitive Turing machine. Part b) provides the opposite inclusion; given a context-
sensitive machine we can build a standard machine that accepts the same language.
Thus the family of languages accepted by these types of machines are identical.

SOLUTIONS TO EXERCISES 49

14. b) The two-tape Turing machine with tape alphabet {a, b, B} and accepting state is q4
defined by the transitions

δ(q0, B,B) = [q1;B,R;B,R]
δ(q1, x,B) = [q1;x,R;x,R] for every x ∈ {a, b}
δ(q1, B,B) = [q2;B,L;B,S]
δ(q2, x,B) = [q2;x, L;B,S] for every x ∈ {a, b}
δ(q2, B,B) = [q3;B,R;B,L]
δ(q3, x, x) = [q3;x,R;x, L] for every x ∈ {a, b}
δ(q3, B,B) = [q4;B,S;B,S]

accepts the palindromes over {a, b}. The input is copied onto tape 1 in state q1. State
q2 returns the head reading tape 1 to the initial position. With tape head 1 moving
left-to-right and head 2 moving right-to-left, the strings on the two tapes are compared.
If both heads simultaneously read a blank, the computation terminates in q4.

The maximal number of transitions of a computation with an input string of length n
occurs when the string is accepted. Tape head 1 reads right-to-left, left-to-right, and then
right-to-left through the input. Each pass requires n+1 transitions. The computation of
a string that is not accepted halts when the first mismatch of symbols on tape 1 and tape
2 is discovered. Thus, the maximal number of transitions for an input string of length n
is 3(n+ 1).

19. A deterministic machine M was constructed in Exercise 5 (c) that accepts strings over {a, b}
with the same number of a’s and b’s. Using M, a composite machine is constructed to determine
whether an input string contains a substring of length three or more with the same number of
a’s and b’s. Nondeterminism is used to ‘choose’ a substring to be examined. States p0 to p7

nondeterministically select a substring of length three or more from the input.

p1
p2 p3p0

a/B R
b/B R

b/b R
a/a R

b/b R
a/a R

b/b R
a/a R

b/B R
a/B R

b/b R
a/a R

b/b L
a/a Lb/b L

a/a L

b/B R
a/B R

B/B R

B/B S

B/B RTo M:

p4

B/B L

B/B L p5
p6

p7

q1

The transition to state q1 of M begins the computation that checks whether the chosen sub-
string has the same number of a’s and b’s. The accepting states of the composite machine are
the accepting states of M.

This problem illustrates the two important features in the design of Turing machines. The
first is the ability to use existing machines as components in more complex computations. The
machine constructed in Exercise 5 (c) provides the evaluation of a single substring needed in
this computation. The flexibility and computational power that can be achieved by combining
submachines will be thoroughly examined in Chapter 9.

The second feature is the ability of a nondeterministic design to remove the need for the
consideration of all possible substrings. The computation of a deterministic machine to solve

50 CHAPTER 8. TURING MACHINES

this problem must select a substring of the input and decide if it satisfies the conditions. If
not, another substring is is generated and examined. This process must be repeated until an
acceptable substring is found or all substrings have been generated and evaluated.

21. The two-tape nondeterministic machine whose state diagram is given below accepts {uu | u ∈
{a, b}∗}. In the diagram, x and y represent arbitrary elements from {a, b}.

q1

[x/x R, B/x R]

[x/x S, B/B L]

[x/x S, y/y L]

[B/B R, B/B R]

[B/B R, B/B R]

q2
q0

[x/x S, B/B R]

[x/x R, y/y R]

q3

q4

The computation begins by copying an initial segment of the input on tape 1 to tape 2. A
nondeterministic transition to state q2 represents a guess that the current position of the head
on tape 1 is the beginning of the second half of the string. The head on tape 2 is repositioned
at the leftmost square in state q2. The remainder of the string on tape 1 is then compared with
the initial segment that was copied onto tape 2. If a blank is read simultaneously on these
tapes, the string is accepted. Finding any mismatch between the tapes in this comparison
causes the computation to halt without accepting the input.

The maximal number of transitions occurs when all but the final symbol of the input string is
copied onto tape 2. In this case, the head on tape 2 moves to tape position n, back to position
0, and begins the comparison. This can be accomplished in 2(length(w) + 1) transitions.

23. Let M be a nondeterministic Turing machine that halts for all inputs. The technique in-
troduced in the construction of an equivalent deterministic machine M′ given in Section 9.7
demonstrates that L(M) is recursively enumerable. M′ systematically simulates all computa-
tions of M, beginning with computations of length 0, length 1, length 2, etc. The simulation of
a computation of M is guided by a sequence of numbers that are generated on tape 3. When
one of the simulated computations accepts the input string, M′ halts and accepts. If the input
is not in L(M), M′ indefinitely continues the cycle of generating a sequence of numbers on tape
3 and simulating the computation of M associated with that sequence.

Unfortunately, the preceding approach cannot be used to show that L is recursive since the
computation of M′ will never terminate for a string that is not in the language. To show that
L(M) is recursive, we must construct a deterministic machine that halts for all inputs. This can
be accomplished by adding a fourth tape to M′ that records the length of the longest simulated
computation that has not halted prematurely. A computation terminates prematurely if the
simulation terminates before executing all of the transitions indicated by the sequence on tape
3. Upon the termination of a simulated computation that did not halt prematurely, the length
of the sequence on tape 3 is recorded on tape 4.

The machine M′ checks the length of non-prematurely terminating computations of M prior to
simulating a subsequent computation of M. After a numeric sequence of length n is generated
tape 3, tape 4 is checked to see if there has been a previous simulated computation using n−1
transitions. If not, M′ halts and rejects. Otherwise, M′ simulates the next computation.

If a string u is in L(M), the computation of M′ will simulate an accepting computation of M and
accept u. If u in not in L(M), then all computations of M will terminate. Let k be the length
of the longest computation of M with input u. When the simulations reach computations with
k+2 transitions, M′ will halt and reject u.

SOLUTIONS TO EXERCISES 51

26. Let M = (Q, Σ, Γ, δ, q0, F) be a Turing machine that demonstrates that L is a recursive
language. Since every computation of M halts, the machine (Q, Σ, Γ, δ, q0, Q − F) accepts
the complement of L. Thus L is not only recursively enumerable, but also recursive.

Conversely, we must show that L is recursive when both L and its complement are recursively
enumerable. By Theorem 8.3.2, there are machines M1 = (Q1, Σ, Γ1, δ1, q0) and M2 = (Q2,
Σ, Γ2, δ2, p0) that accept L and L by halting. These machines provide sufficient information
to decide whether a string u is in L. If u ∈ L, then the computation of M1 halts. On the other
hand, M2 halts when u 6∈ L.

We construct a two-tape machine M that simulates the computations of both M1 and M2.
The input alphabet of M is Σ, the tape alphabet is Γ1 ∪ Γ2 and the start state is r0. A
computation begins by copying the input onto tape 2 and repositioning the tape heads at the
initial position. This is accomplished by the transitions defined in (i) through (v) below. M
then ‘runs’ M1 on tape 1 and M2 on tape 2. The states of M that simulate the computation
of the composite machines are elements of the Cartesian product Q1× Q2 ×{1, 2}. That is, a
state is an ordered triple consisting of a state of M1, a state of M2 and an element of {1, 2}.

i) δ(r0, B,B) = [r1;B,R;B,R]

ii) δ(r1, x,B) = [r1;x,R;x,R] for every x ∈ Σ

iii) δ(r1, B,B) = [r2;B,L;B,L]

iv) δ(r2, x, x) = [r2;x, L;x, L] for every x ∈ Σ

v) δ(r2, B,B) = [[q0, p0, 1];B,S;B,S]

vi) δ([qi, pj , 1], x, y) = [[qn, pj , 2]; s, d1; y, S] whenever δ1(qi, x) = [qn, s, d1]

vii) δ([qi, pj , 2], x, y) = [[qi, pm, 1];x, S; t, d2] whenever δ2(pj , x) = [pn, t, d2]

When a 1 occurs in the state, M processes a transition of M1 on tape 1. The status of the
computation of M2 is unaffected by such a transition. Similarly, a transition of the form
δ([qi, pj , 2], x, y) indicates that a transition of M2 is to be executed on tape 2.

For every input string, either the computation of M1 or M2 terminates. A string is accepted if
the computation halts due to the lack of a transition for a configuration on tape 1. Thus the
set of final states of M consists of triples of the form [qi, pj , 1].

32. The machine in Figure 8.1 generates all nonnull strings over an alphabet {1, 2, . . . , n}. The
strategy of this machine can be employed to build a two-tape machine that enumerates all
strings over {0, 1}. Intuitively, the strings are generated on tape 2 and then output on tape 1.

q1

[B/B S, 1/1 L]
[B/B S, 0/0 L]

[B/B S, B/0 L]

[B/B S, 0/1 L]

[B/B S, 0/0 R]

[B/B S, B/B R]

[B/0 R, 0/0 R]
[B/1 R, 1/1 R]

[B/B S, B/B L]

[B/B S, 1/0 L]

[B/B R, B/B S]

[B/# R, B/B R]

q4

q3q2

q0

52 CHAPTER 8. TURING MACHINES

The cycle of producing and writing a string on tape 1 begins in q1. A # is written on tape
1 followed by the string in the input position on tape 2. For the remainder of the cycle, the
tape head on tape 1 remains stationary while the next string is generated on tape 2.

33. We will outline the strategy employed by a Turing machine that enumerates all ordered pairs
of natural numbers. The number n will be represented by the string 1 n+1 and we will denote
this representation by n.

The enumerating machine has three tapes: the enumeration tape, the diagonal tape, and
the work tape. The computation consists of an initialization phase followed by a loop that
enumerates the ordered pairs.

Initialization:

1. 1 is written on the diagonal tape.

2. #1B1# is written on the enumerating tape.

The initialization writes the ordered pair [0, 0] on enumerating tape. Entering the loop that
comprises the main portion of the computation, the diagonal tape holds the value of a diagonal
element [n, n] in the grid N×N. All the elements in the square bounded by [0, 0] and [n, n]
have already been written on the enumerating tape.

Loop:

1. The number on the diagonal tape is incremented, producing n+ 1.

2. The diagonal pair [n+ 1, n+ 1], n+ 1Bn+ 1#, is written on the enumerating tape.

3. n is written on the work tape.

4. While the work tape is not blank

- the string on the work is copied tape to the enumeration tape,

- B is written on the enumeration tape,

- the string on the diagonal tape is copied to the enumeration tape,

- # is written on the enumeration tape,

- a 1 is erased from the work tape.

5. n is written on the work tape.

6. While the work tape is not blank

- the string on the diagonal is copied tape to the enumeration tape,

- B is written on the enumeration tape,

- the string on the work tape is copied to the enumeration tape,

- # is written on the enumeration tape,

- a 1 is erased from the work tape.

The diagonal element [n + 1, n + 1] is written on the enumerating tape in step 2. The loop
beginning at step 4 writes the pairs [n, n+1], [n− 1, n+ 1], . . . , [0, n+ 1] on the enumerating
tape. In a like manner, step 6 writes the pairs [n + 1, n], [n + 1, n − 1], . . . , [n + 1, 0]. Each
subsequent iteration through the loop increases the size of the square in the N×N that has
been enumerated.

34. Definition 8.8.1, the definition of the enumeration of a language by a Turing machine, does
not require the machine to halt when the entire language has been written on tape 1. After
completely listing the strings in a finite language, an enumerating machine may continue
indefinitely. For a string not in the language that is lexicographically greater than any string
in the language, the halting condition given in Case 2 of Theorem 8.8.7 is never triggered.

Chapter 9

Turing Computable Functions

2. Let M a machine that computes the partial characteristic function of a language L. A machine
M′ that accepts L can be built by extending M. When a computation of M halts, M′

- checks to see if 1 is on the tape,

- if so, M′ enters an accepting state and halts, otherwise

- M′ enters a rejecting state and halts.

5. d) The Turing machine whose state diagram is given below computes the relation

even(n) =

{

1 if n is even
0 otherwise.

The input string represents an even number if a blank is read in q2 and an odd number
if a blank is read in q3.

q1
q2 q3q0

1/X R B/B L

1/B L

1/1 R

1/1 R

X/1 L

1/1 LB/1 L

1/B L

B/B R

B/B L

X/1 R

q7

q4

q5 q6 qf

After determining the parity, the input is erased and the appropriate answer is written
on the tape.

6. b) The find left macro FL

q
f

q
0

1/1 L

B/B L 1/1 L

moves right-to-left reading blanks until it encounters a 1. The computation then traverses
the sequence of 1’s and halts in state qf .

53

54 CHAPTER 9. TURING COMPUTABLE FUNCTIONS

7. a) A machine M that computes the function f(n) = 2n + 3 can be obtained by combining
the copy, add, and constant macros.

*

*

**

* * *

CPY
1

CPY
1

ML
1

MR
1

MR
1*

ML
1

A

A

C
3

(1)

*

*

The machine C
(1)
3 computes the function c

(1)
3 , which was shown to be Turing computable

in Example 9.4.2. Tracing the computation of M with input n illustrates the interaction
among the machines that make up M.

Machine Configuration
BnB

CPY1 BnBnB
MR1 BnBnB
CPY1 BnBnBnB
MR1 BnBnBnB

C
(1)
3 BnBnB3B

ML1 BnBnB3B
A BnBn+ 3B
ML1 BnBn+ 3B
A B2n+ 3B

8. a) A machine can be constructed to compute the characteristic function of the greater than
relation

gt(n,m) =

{

1 if n > m
0 otherwise.

The relations lt and gt satisfy the equality gt(n,m) = lt(m,n). The machine to compute
gt uses this relationship and the machine LT from Exercise 5 f):

SOLUTIONS TO EXERCISES 55

CPY
1,1

LT

T

MR
1

ML
1

E
1*

* * *

*

**

The action of the composite machine GT is exhibited by tracing a computation. The
underscore indicates the position of the tape head in the configuration.

Machine Configuration
BnBmB

CPY1,1 BnBmBnB
MR1 BnBmBnB

LT BnBlt(m,n)B

ML1 BnBlt(m,n)B

E1 B . . . Blt(m,n)B

T Blt(m,n)B

10. a) The function
f = add ◦ (mult ◦ (id, id), add ◦ (id, id))

is a one-variable function; the evaluation begins with the input provided to the occurrences
of the identity function in f . Evaluating f with argument n yields

f(n) = add(mult(id(n), id(n)), add(id(n), id(n)))

= add(mult(n, n), add(n, n))

= add(n · n, n+ n)

= n2 + 2 · n

b) The function p
(2)
1 ◦ (s◦p

(2)
1 , e◦p

(2)
2) is the two-variable empty function. Regardless of the

value of the arguments, e ◦ p
(2)
2 produces an undefined value in the second component of

the ordered pair. This, in turn, causes the entire function to be undefined.

12. a) Let g be the function g(n) = 2n and let h be

h(n) =

{

n/2 if n is even
↑ otherwise.

Not only is h ◦ g total, it is the identity function.

Modifying h by defining h(n) to be 0 for all odd n produces a pair of functions g and h
that provide a solution to Exercise 11 a).

b) Let g be g(n) = 2n + 1 and h be the function defined in part a). For any n, g(n) is an
odd number and, consequently, h ◦ g is undefined.

13. Let f be a Turing computable function and F a machine that computes f . We construct a
machine M that returns the first natural number n for which f(n) = 0. A computation consists

56 CHAPTER 9. TURING COMPUTABLE FUNCTIONS

of a cycle that produces BnBf(n)B, for n = 0, 1, . . . , until a value n for which f(n) = 0 is
encountered.

*

*

**

* *

*

CPY
1

F

ML
1

MR
1

BRN

n = 0

n > 0

*

S E
1

*

The computation begins with the counter 0 on the tape. A working copy of 0 is made and F
is run on the copy. The BRN macro is used to determine whether the computed value of f
is 0. If not, the computed value is erased, the counter is incremented, and the subsequent f
value is computed. The cycle of generating a natural number and computing the f value halts
when a natural number n is found for which f(n) = 0.

If f never assumes the value 0, the computation continues indefinitely. If f is not total, the
computation will return n where n is the first value for which f(n) = 0 only if f is defined for
all m < n. Otherwise, M loops upon encountering the first value for which f(m)↑.

15. Let R be a Turing computable unary relation and M a machine that computes the characteristic
function of R. A machine that accepts R can be built using M and the branch macro.

* *M BRN

n = 0

n > 0

*

*

The computation of M halts with 0 on the tape if, and only if, the input string is not an
element of R. Consequently, the composite machine accepts R.

17. Let L ⊆ {1}+ be a recursive language and let M = (Q, Σ, Γ, δ, q0, F) be a machine that
accepts L. The language L defines a unary relation R on the natural numbers by

R(n) =

{

1, 1n+1 ∈ L;
0, otherwise.

To show that R is computable, we build a machine M′ that writes the correct answer on the
tape at the end of a computation of M. The process is not quite as simple as it sounds, since M′

must erase the tape prior to writing the answer. That means, M′ must record the furthest right
on the tape reached during a computation of M. To do this, we augment the tape alphabet to

SOLUTIONS TO EXERCISES 57

include symbols [L, x] and [R, x], for each x ∈ Γ, that act as left and right endmarkers of the
portion of the tape read during a computation of M.

A computation of M′ with input u consists of the following steps:

(a) Initially M′ writes [L,B] and [R,B] in the squares on either of the input, producing
[L,B]u[R,B].

(b) The computation of M on the string BuB is simulated by M′ on [L,B]u[R,B].

(c) If the simulation of M indicates that M would halt in an accepting state, M′ erases the
tape and writes 11 in the input position.

(d) If the simulation of M indicates that M would halt in a nonaccepting state, M′ erases the
tape and writes 1 in the input position.

The start state of M′ is q0′ and the transition function is denoted δ′. The transitions to insert
the endmarkers are

δ′(q0′ , B) = [q1′ , [L,B], R]

δ(q1′ , x) = [q1′ , x,R] for all x ∈ Σ

δ(q1′ , B) = [q2′ , [R,B], L]

δ(q2′ , x) = [q2′ , x, L] for all x ∈ Σ

δ(q2′ , x) = δ(q0, x)

Once the endmarkers are in place, the computation of M is simulated by the transitions

δ′(qi, x) = δ(qi, x) for every transition δ(qi, x)

δ′(qi, [L, x]) = [qj , [L, y], R] for every transition δ(qi, x) = [qj , y, R]

δ′(qi, [R, x]) = [qj , [R, y], L] for every transition δ(qi, x) = [qj , y, L]

δ′(qi, [R, x]) = [qi,x,1, y, R] for every transition δ(qi, x) = [qj , y, R]

δ′(qi,x,1, B) = [qi,x,2, [R,B], R]

δ′(qi,x,2, B) = [qj , B, L]

When a move to the right is indicated with the tape head reading the right endmarker, the
appropriate symbol is written and the tape head moves right. At this point it writes the new
endmarker [R,B] on the tape and enters qj to continue the simiulation of M.

When M halts in an accepting state, M′ finds the right endmarker, erases the tape, and writes

58 CHAPTER 9. TURING COMPUTABLE FUNCTIONS

the answer on the tape. For every qi ∈ F with δ(qi, x) undefined,

δ′(qi, x) = [q3′ , x,R]

δ′(qi, [R, x]) = [q4′ , B, L] for x ∈ Γ

δ′(qi, [L, x]) = [q3′ , [L, x], R] for x ∈ Γ

δ′(q3′ , x) = [q3′ , x,R] for x ∈ Σ

δ′(q3′ , [R, x]) = [q4′ , B, L] for x ∈ Γ

δ′(q4′ , x) = [q4′ , B, L] for x ∈ Γ

δ′(q4′ , [L, x]) = [q5′ , B,R] for x ∈ Γ

δ′(q5′ , B) = [q6′ , 1, R]

δ′(q6′ , B) = [q7′ , 1, L]

δ′(q7′ , 1) = [qf , 1, L]

where qf is the terminal state of M′.

A similar set of transitions write a negative answer when M halts in a nonaccepting state.

19. A comparison of cardinalities will be used to show that there are uncomputable functions that
satisfy f(i) = i for all even natural numbers. By Theorem 9.5.1 we know that the set of
computable number-theoretic functions is countable.

Diagonalization can be used to show that there are uncountably many functions that are the
identity on the set of even natural numbers. Assume that this set of functions is countably
infinite. Countability implies that there is an exhaustive listing f0, f1, . . . , fi, . . . of these
functions. Consider the function

f(n) =

{

n if n is even
f(n−1)/2(n) + 1 otherwise

Clearly f is the identity on all even numbers. However,

f(1) 6= f0(1)

f(3) 6= f1(3)

f(5) 6= f2(5)

...

f(2n+ 1) 6= fn(2n+ 1)

...

Since f 6= fn for all n, f is not in the listing f0, f1, . . . , fi, This contradicts the assumption
that the set is countably infinite.

Since the set Turing computable functions is countable and the set of number-theoretic func-
tions that are the identity on the even natural numbers is uncountable, there functions of the
latter form that are uncomputable.

Chapter 10

The Chomsky Hierarchy

1. a) The unrestricted grammar

S → X | Y | aPAbQb
X → aaX | λ
Y → bbY | λ
P → aPA | λ
Q→ bQb | E
Ab→ bA
AE → a
Aa→ aa

generates the language {aibjaibj | i, j ≥ 0}. Rules S → X and S → Y initiate derivations
that generate λ, a2i, and b2i. The derivation of a string aibjaibj , with i, j > 0, begins
with an application of S → aPAbQb. Repeated applications of the P and Q rules produce
aiAibjEbj . The rules Ab→ bA, AE → a, and Aa→ aa are then used to obtain the desired
configuration of the terminals. The derivation of aabaab demonstrates the repositioning
of the variable A and its transformation to the terminal a.

S ⇒ aPAbQb
⇒ aaPAAbQb
⇒ aaAAbQb
⇒ aaAAbEb
⇒ aaAbAEb
⇒ aabAAEb
⇒ aabAab
⇒ aabaab

3. Let G = (V, Σ, P, S) be an unrestricted grammar. We construct a grammar G′ = (V′, Σ,
P′, S) that generates L(G) in which each rule has the form u → v where u ∈ (V′)+ and v ∈
(V′ ∪ Σ)∗. The set of variables of V′ consists of the variables of V and a new variable Ta for
every a ∈ Σ. For a string u ∈ (V ∪ Σ)∗, let T (u) denote the string obtained by replacing each
terminal a in u with the corresponding variable Ta. The rules of G′ are

i) T (u)→ T (v) for every rule u→ v ∈ P

ii) Ta → a for every a ∈ Σ.

59

60 CHAPTER 10. THE CHOMSKY HIERARCHY

The grammar G contains a derivation S
∗
⇒ w if, and only if, S

∗
⇒ T (w) is a derivation of G′.

Using the rules defined in (ii) to transform each variable Ta to the corresponding terminal, we
see that L(G) = L(G′).

4. c) Let L1 and L2 be two recursively enumerable languages. We will construct an unrestricted
grammar G that generates L1L2 from grammars G1 = (V1, Σ1, P1, S1) and G2 = (V2,
Σ2, P2, S2) that generate L1 and L2 respectively.

Let us first recall the proof of Theorem 7.5.1, which established that the context-free
languages are closed under concatenation. The grammar

G = (V1∪ V2, Σ2 ∪ Σ2, P1∪ P2 ∪ {S → S1S2}, S)

was constructed from G1 and G2 where S 6∈ V1∪ V2 and V1 and V2 are assumed to be
disjoint. Unfortunately, we must be careful in combining unrestricted grammars in this
manner since the left-hand side of a rule may contain more than one symbol. For example,
consider derivations S1

∗
⇒ x in G1 and S2

∗
⇒ y in G2. It follows that S

∗
⇒ xy. Now either

P1 or P2 may contain a rule u → v where xy = x′uy′. In this case, the transformation
obtained by the application of the rule u → v may produce a string that is not in the
concatenation of L1 and L2.

The grammars G1 and G2 must be constructed to insure that no rule can overlap the
strings derived from S1 and S2. Using Exercise 3, we can assume that the left-hand side
of every rule in G1 and G2 consists solely of variables. As before, we also assume that V1

and V2 are disjoint. When G1 and G2 satisfy these conditions, the grammar G defined
above generates L1L2 .

6. a) S ⇒ SBA
⇒ aBA
⇒ aAB
⇒ aaBB
⇒ aabB
⇒ aabb

b) The language of G is {ai+1b2i | i ≥ 0}.

c) L(G) is generated by the rules S → aSbb | a.

8. a) The language L satisfies the pumping lemma. Let z be any string in L, then z = aibjck

with 0 < i ≤ j ≤ k. Selecting u = aibj−1, v = b, w = λ, x = c, and y = ck−1 is
a decomposition in which v and x are pumpable. Even though the pumping lemma is
satiafied, L is nevertheless not context-free.

b) The context-sensitive grammar

S → aAbc

A→ aAbC | B

B → bBC | BC | bC | C

Cc→ cc

generates the language {aibjck | 0 < i ≤ j ≤ k}. The S rule puts a c on the end of the
string. The recursive A rules generate a matching number of a’s, b’s, and C’s. The B
rules produce a matching C for each b and, possibly, additional C’s. The C’s are moved
to the end of the string by the Cb→ bC rule and then turned to c’s by Cc→ cc.

10. Let u→ v be a monotonic rule with length(v) > 2. We define a set P of monotonic rules that
produce the same transformation as u → v. The rules of P are constructed so that a string

SOLUTIONS TO EXERCISES 61

on the right-hand side of a rule has length less than length(v). Without loss of generality we
assume that u, v ∈ V∗. If not, every occurrence of a terminal a in u and v is replaced by a
new variable Ta and the rule Ta → a is added to P as in Exercise 3. The construction of P is
divided into two cases.

i) If length(u) = 1, then u→ v can be written A→ BCDv′ where A,B,C,D ∈ V and v′ ∈
V∗. Using two new variables X and Y , the monotonic rules

A→ XY
X → BC
Y → Dv′

define the same transformation as u→ v.

ii) If length(u) > 1, then u→ v can be written AEu′ → BCDv′. The rules

AE → XY
X → B
Y u′ → CDv′

generate the transformation u→ v.

In either case, the right-hand side of each rule produced using these transformations has length
at most length(v) − 1. This procedure can be repeated until the length of the right-hand of
each rule is at most two.

11. The string transformation obtained by applying the rule AB → CD can be obtained by the
sequential application of the three rules

AB → XB
XB → XD
XD → CD

Each of these rules has the context-sensitive form uAv → uwv with w 6= λ.

13. The answer depends on the depth of the tree T. If the depth is 0, the language consists only
of the null string, which is regular.

If the tree has depth 1, the language is (LU ∪RU)∗. This follows since the most steps down
the tree that can be taken from the root is one, either right or left, followed by a move up the
tree. This process can be repeated any number of times to produce a string in L.

In general, a string is accepted if it satisfies the following two conditions:

a) the number of steps that move down tree equals the number of steps that move up, snd

b) the steps do not specify a move down from a leaf or up from the root.

For a tree of depth n, a DFA with 2n + 2 states can be constructed to accept the language.
State q0 is the accepting state and represents a string with the same number of U ’s as L’s and
R’s. States qi, i = 1, . . . , n, are entered when a string has i more U ’s than L’s and R’s. States
qi, i = n+ 1, . . . , 2n, are entered when a string has i more L’s and R’s than U ’s. If the string
represents a path the would leave the tree, the DFA enters an error state qe and rejects the
string.

If the full binary tree has infinite depth, the strings λ, LU , LLUU , . . . , LiU i, . . . , are in the
language. This sequence can be used with Corollary 6.5.2 to establish that the language is not
regular.

62 CHAPTER 10. THE CHOMSKY HIERARCHY

To show that the language is context-free, a pushdown automaton can be constructed to accept
it. Whenever an L or R is read, a A is pushed onto the stack. When a U is read, if there
is an A on the stack it is popped. Otherwise, the computation rejects the string. A string is
accepted if the computation processes the entire string and halts with an empty stack.

15. Let L be a recursively enumerable language accepted by the standard Turing machine M =
(Q, Σ, Γ, δ, q0, F) and let c be a terminal symbol not in Σ. The language

L′ = { wci | M accepts w by a computation in which the tape
head does not read tape position length(w) + i+ 1}

is accepted by a linear-bounded machine M′ constructed from M. A computation of M′ with
initial tape configuration 〈u〉 begins by checking if the u has the form wcj+1 for some string
w ∈ Σ∗ and j ≥ 0. If so, then the final c is erased and the input shifted one position to the right
producing 〈Bwcj〉. The tape head is then moved to position 1 to read the blank preceding
the input string. For the remainder of the computation, the transitions of M′ are identical to
those of M except M′ treats the c as a blank. A transition of δ′[qi, c] of M

′ performs the same
actions as δ[qi, B] of M.

Let k be the furthest tape position scanned during the computation of M that accepts a string
w. Choosing i so that length(w) + i + 1 > k, the computation of M′ will remain within the
segment of tape enclosed within the endmarkers. Consequently M′ accepts wci.

Moreover, the only way that M′ accepts a string wci is to mimic a computation of M that
accepts w that remains within the tape the first length(w) + i tape positions.

Chapter 11

Decision Problems and the
Church-Turing Thesis

4. A three-tape Turing machine can be designed to solve the “2n” problem. In this solution we
represent the natural number n by 1 n. The numbers 20, 21, 22, . . . are sequentially produced
on tape 2 and compared with the input string on tape 1. Tape 3 is used in the generation of
the sequence on tape 2. The computation of the machine with input u consists of the following
actions.

1. A 1 is written on tapes 2 and 3.

2. Reading left to right, the length of the strings on tapes 1 and 2 is compared.

3. If blanks are simultaneously read on tapes 1 and 2, the computation halts accepting the
input.

4. If a blank is read on tape 1 and a 1 on tape 2, the computation halts rejecting the input.

5. If a blank is read on tape 2 and a 1 on tape 1, then

- the string on tape 3 is concatenated to the string on to tape 2,

- tape 3 is erased and the string from tape 2 is copied to tape 3,

- all tape heads are repositioned at the initial position, and

- the computation continues with step 2.

At the beginning of step 2, tapes 2 and 3 both contain the representation of 2i. When the
length of the input string u is compared with the string on tape 2, there are three possible
outcomes: length(u) = 2i and the input is accepted in step 3, length(u) < 2i and the input is
rejected in step 4, or length(u) > 2i. In the latter case, the string 2i+1 is generated in step 5
and the comparison is repeated.

7. a) A regular grammar G = (V, Σ, P, S) has rules of the form A → aB, A → a, or A → λ
where A,B ∈ V and a ∈ Σ. To construct the encoding of the rules of the grammar over
the set {0 , 1}, we assign a number to each of the variables and terminals. If |V | = n then
we number the variables from 1 to n with S assigned 1. The terminals are numbered from
n+ 1 to n+m where m = |Σ|. The symbol assigned number n is encoded by the string
1n. The encoding of a variable A and a terminal a will be denoted en(A) and en(a). The
encoding of a string w over (V ∪ Σ)∗, denoted en(w), consists of the encoding of each of
the symbols in w separated by 0 ’s.

63

64 CHAPTER 11. DECISION PROBLEMS

Rules of the form A → λ, A → a, and A → aB are encoded by the strings en(A),
en(A)0en(a), and en(A)0en(a)0en(B), respectively. Rules are separated by 00 . The
representation of a regular grammar G, denoted R(G), is the concatenation of the encod-
ing of the rules.

Consider the regular grammar G

S → aS | aA
A→ bA | λ

that generates the language a+b∗. The grammar G is represented by the string

en(S)0en(a)0en(S)00en(S)0en(a)0en(A)00en(A)0en(b)0en(A)00en(A).

b) A nondeterministic two-tape Turing machine M is designed to solve the question of deriv-
ability in a regular grammar. A computation of M that decides whether a string w is in
L(G) begins with input consisting of the encoding of the rules of the grammar followed
by 000 and the encoding of w.

The actions of a machine M that solves the derivability problem are described below. M
uses the representation of the rules of G to simulate a derivation of G on tape 2.

1. The computation of M begins by determining whether the input has the form
R(G)000en(w). If not, M halts rejecting the input.

2. The encoding of S is written in position one of tape 2.

3. Let uA be the string that is encoded on tape 2. A rule A → v is chosen nondeter-
ministically from the encodings on tape 1. The encoding of the variable A is then
replaced with the encoding of v on tape 2.

4. If v is a terminal symbol or the null string, the string on tape 2 is compared with the
encoding of w on tape 1. If they are identical, M halts and accepts the input.

5. If v = aB for some a ∈ Σ and B ∈ V, then the lengths of ua and w are compared.
The input is rejected if length(ua) > length(w). If not, steps 3–5 are repeated.

Step 5 insures that a computation of M halts after the simulation of at most length(w)+
1 rule applications. Consequently, all computations of M terminate and M solves the
derivability problem.

7. c) A strategy for a machine to reduce membership in the language {xiyi+1 | i ≥ 0} to
{aibi | i ≥ 0} is described below. The appropriate action is determined by the form of
input string.

i) If there is an x that occurs after a y, the input is erased and a is written in the input
position.

ii) If the input is λ, an a is written in the input position.

iii) If the input string has the form x+, the x’s are changed to a’s.

iv) If the string has the form x∗y+, a y is erased from the end of the input and the
remaining x’s and y’s are changed to a’s and b’s.

11. The universal machine U is modified to construct a machine U1 that accepts strings over
{0 , 1} of the form R(M)w where the computation of M with input w prints a 1. U1 accepts
by final state and has a single accepting state.

A computation of U1 initially determines whether the input has the form R(M)w. If so, the
computation continues with the simulation of the transitions of M in the manner of the uni-
versal machine. Before the simulation of a transition of M by U1 , step 4 (b) of the description
of the universal machine in Theorem 11.4.1, the symbol y to be printed is examined. If y is 1,
then the U1 enters the accepting state and halts. Otherwise, the simulation of the computation
of M continues.

SOLUTIONS TO EXERCISES 65

14. At first glance, this problem might seem to require the computation of the machine M to
be tested on every possible input string—but this is not case. The first 10 transitions of a
computation can read at most the first 10 symbols in the input string. Thus all that is necessary
is to check the computation of M on all strings of length 10 or less. If a computation on this
finite set of strings requires more than 10 transitions, the answer is yes. If no computation
with any string from this set requires more than 10 transitions, the answer is no.

A modification of the universal machine can be used to perform this check. Two tapes are
added to the universal; one used in the generation of the strings from Σ∗ of length 10 or less
and the other to count the number of transitions in the simulation of a computation of M.
Tape 4 will hold the input and tape 5 will serve as a counter. The input to this machine is the
representation of M.

The computation consists of the following cycle:

1. The null string is written on tape 4.

2. The string 1n is written on tape 5.

3. The string on tape 4 is copied to tape 3 and the encoding of state qo is written on tape 2.

4. The computation of M with the input string from tape 4 is simulated on tapes 2 and 3.
With each simulated transition, a 1 is erased from tape 5.

5. If the simulation of M specifies a transition and tape 5 is scanning a blank, the compu-
tation halts and accepts.

6. If the simulation of M halts and a 1 is read on tape 5 then

- tapes 2, 3 and 5 are erased,

- the string 1n is written on tape 5, and

- the next string is generated on tape 4.

7. If the string on tape 4 has length greater than 10, the computation halts and rejects the
input. Otherwise, the computation continues with step 3.

66 CHAPTER 11. DECISION PROBLEMS

Chapter 12

Undecidability

3. Let M be a Turing machine that accepts a nonrecursive language L. Without loss of generality,
we may assume that the computation of M continues indefinitely whenever the input is not in
L.

Assume that there is a machine H that solves the Halting Problem for M. The halting machine
H accepts a string w if M halts with input w. That is, if w ∈ L. In addition, the computation
of H halts in a nonaccepting state for all strings in L. Consequently, L(H) = L. Since H halts
for all input strings, it follows that L is recursive. This is a contradiction since our original
assumption was that L is nonrecursive. Thus we conclude that there is no halting machine H.

6. We will show that the Halting Problem is reducible to the question of whether a Turing machine
enters a designated state. The reduction has the form

Reduction Input Condition
Halting Problem M, w M halts with w

to ↓ ↓
State Problem M′, w, qf M′ enters state qf

when run with w

The string w is the same for both problems. The machine M′ is constructed from M by adding
an additional state qf . The idea behind the reduction that M′ enters qf whenever M halts.

Let M = (Q, Σ, Γ, δ, q0, F) be a Turing machine. The machine
M′ = (Q ∪ {qf}, Σ, Γ, δ

′, q0, {qf}) with transition function

i) δ′(qi, x) = δ(qi, x) whenever δ(qi, x) is defined

ii) δ′(qi, x) = [qf , x,R] whenever δ(qi, x) is undefined

enters qf for precisely the strings for which M halts. The computations of M′ are identical to
those of M until M halts. When this occurs, M′ enters qf . Thus M halting is equivalent to M′

entering qf .

Assume that there is a machine S that solves the state problem. The input to S is a rep-
resentation of a Turing machine M, input string w, and state qi. S accepts the input if the
computation of M with input w enters state qi. Adding a preprocessor N to S, we construct a
machine H that solves the halting problem.

The input to N is R(M)w, the representation of a Turing machine M followed by an input
string. By adding the encoding of transitions described above to R(M), N constructs the
representation of the machine M′. N then adds qf to the end of the string producing R(M′)wqf .

67

68 CHAPTER 12. UNDECIDABILITY

The machine H combines N and S. A computation of H

1. runs N on input R(M)w producing R(M′)wqf

2. runs S on R(M′)wqf .

H accepts input R(M)w if, and only if, M′ enters state qf when run with input w. That
is, whenever M halts with input w. Step 1 is a reduction of the Halting Problem to the
State Problem. We conclude that the machine S cannot exist and that the State Problem is
undecidable.

12. a) The language L consisting solely of the string w is recursive, since every finite language
is recursive. The complement of L is also recursive and clearly does not contain w.
Consequently the property of containing the string w is a nontrivial property of recursively
enumerable languages. Thus, by Rice’s Theorem, the question of w being in L(M) is
undecidable.

14. a) Rice’s Theorem can be used to show that L 6=∅ is not recursive. The languages {a}∗ and
∅ are both recursive, with the former language satisfying the property ‘is not the empty
set’ the latter not satisfying the property. Thus the property ‘is not the empty set’ is
nontrivial and membership in L 6=∅ is undecidable.

b) To accept a string R(M) we need to determine if M will accept at least one input string.
Intuitively, the strategy might appear to use a universal machine to simulate computations
of M until one string in Σ∗ is found that is accepted by M or all strings have been checked
and found not to be accepted by M. Unfortunately, if the simulation encounters one
string for which the computation of M does not halt, this strategy will not be able to
check subsequent strings in Σ∗. This is the same difficulty encountered in showing that
a recursively enumerable language can be enumerated (Theorem 8.8.6). The solution to
our difficulty is the same as used in that proof.

A modification of the universal machine can be used to show that L 6=∅ is recursively
enumerable. We add three tapes and use two enumerating machines that have previously
been described. Let u0, u1, u2, . . . be a lexicographic ordering of the strings in Σ∗.
Ordered pairs [i, j] are generated on tape 4 using the enumerating the machine introduced
in Exercise 8.33. When a pair [i, j] is written the tape, the string ui is generated on tape
5 and i j is written on tape 6.

At this point, the computation of M with input ui is simulated on tapes 2 and 3 for
j transitions. The string on tape 6 is used as a counter to halt the simulation when j
transitions have been executed. If ui is accepted by M in j transitions, L(M) is accepted.
Otherwise, the work tapes are reinitialized, the next ordered pair is generated, and the
simulation continues.

If M accepts some string un, it does so in some finite number m of transitions. When
[n,m] is generated, un will be checked and L(M) accepted. If M does not accept any
string, the loop of generating and testing will continue indefinitely.

16. a) A solution to the Post correspondence system {[a, aa], [bb, b], [a, bb]} is obtained by playing
the dominoes

a a bb bb
aa bb b b

17. a) We will show that no sequence of dominoes can be constructed that solves this Post
correspondence problem. A solution to the Post correspondence system

{[ab, a], [ba, bab], [b, aa], [ba, ab]}

SOLUTIONS TO EXERCISES 69

must begin with [ab, a] or [ba, bab] since these are the only pairs that have the same
leftmost symbol. A domino that extends the sequence beginning with [ab, a] must have a
b as the first symbol in the bottom string. The only such ordered pair is [ba, bab]. Playing
this produces

ab ba
a bab

in which the top and bottom strings differ in the third symbol.

There are three ways to extend a sequence that begins with [ba, bab].

i)
ba ba
bab bab

ii)
ba b
bab aa

iii)
ba ab
bab ba

Playing [ba, bab] produces strings that disagree at the fourth position. We now turn our
attention to trying to extend sequence (ii). The next domino must have an a in the first
position in the top string. Playing the only domino of this form we obtain the sequence

ba b ab
bab aa a

in which the strings disagree in the fifth position.

The sole remaining candidate is sequence (iii). Note that the rightmost end of these
strings has the same form as the sequence consisting solely of the domino [ba, bab]. That
is, the length of the bottom string is one greater than that of the top string with a b being
the rightmost symbol on the bottom. The preceding argument can be repeated to show
that

ba ba ba
bab ab ab

is the sole extension of (iii) that satisfies the conditions of a solution to this Post corre-
spondence system.

The only way in which this sequence can be extended is to continually play [ba, ab].
Utilizing this strategy, the length of the top string is always one less than that of the
bottom. It follows that there is no sequence of dominoes that form a solution to the Post
correspondence system.

18. We can determine whether a Post correspondence system for an alphabet Σ = {a} has a
solution by examining the relationship of number of symbols in the top of each domino with
the number in the bottom. We will consider four cases.

Case 1: the number of a’s in the top is greater than the number of a’s in the bottom of each
domino. In this case, the Post correspondence system has no solution since every way to play
the dominoes produces a longer top string than bottom string.

Case 2: the number of a’s in the top is less than the number of a’s in the bottom of each
domino. This case also is analogous to case 1 and there is no solution.

70 CHAPTER 12. UNDECIDABILITY

Case 3: there is a domino with the same number of a’s in the top and bottom. This case has
a solution consisting of that single domino.

Case 4: none of the previous cases hold. This means that the Post correspondence system
contains two dominoes [ai, aj] and [am, an] such that i > j and m < n. Playing n − m
dominoes of the form [ai, aj] followed by i − j dominoes of the form [am, an]produces a top
string with

(n−m)i+ (i− j)m = ni−mi+mi− jm = ni−mj

a’s and a bottom string with

(n−m)j + (i− j)m = nj −mj + in− jn = in−mj

a’s. Thus any Post correspondence system satisfying this condition has a solution.

Examining the preceding four cases, we can determine whether any Post correspondence system
over a one symbol alphabet has a solution. Thus this special case of the Post Correspondence
Problem is decidable.

21. Let GU be a grammar whose rules have the form

S → uiSi | uii, i = 1, . . . , n

generated from a Post correspondence system. We will show that L(GU) is context-free.

The language L(GU) consists of strings in which each ui is matched to the integer i in reverse

order. We can build a context-free grammar G′ that generates L(GU). The derivations of G′

produce all strings in which the matching does not occur. To describe the construction we will
consider the substrings ui and integers i to be units. There are two classes of strings that do
not satisfy the matching criteria;

a) strings with an odd number of units, and

b) strings with m units in which there is some position k such that ui is at position k and i
is not at position m− k.

The variables O and E generate the strings in L(GU) with an odd number of units and units
with a mismatch, respectively.

S → O | E

O → uijO | juiO | ijO | uiujO | ui | j where i, j = 1, . . . , n

E → uiEi | A where i = 1, . . . , n

A→ ujBk | iBj | uiBuj | iBuj where i, j, k = 1, . . . , n and j 6= k

B → uiB | iB | λ where i = 1, . . . , n

The variable E produces strings with matching units. The application of an A rule inserts
a mismatch into the string. This is followed by a derivation from B that generates any
combination of units.

22. First we note that a Post correspondence problem C has infinitely many solutions whenever
it is solvable. If w is the string spelled by a solution, then ww, www, . . . are also spelled by
solutions. These solutions are obtained by repeating the sequence of dominoes that spell w.

Let C be a Post correspondence system and let GU and GV be the upper and lower grammars
defined by C. By Theorem 12.7.1, C has a solution if, and only if, L(GU) ∩ L(GV) 6= ∅.
Combining this with the previous observation, C having a solution is equivalent to L(GU)
and L(GV) having infinitely many elements in common. It follows that there is no algorithm
that can determine whether the intersection of the languages generated by two context-free
grammars is an infinite set.

SOLUTIONS TO EXERCISES 71

24. We will use a proof by contradiction to show that the question of determining whether the
languages of two arbitrary context-free grammars G1 and G2 satisfy L(G1) ⊆ L(G2). Assume
such an algorithm exists and let G2 be an arbitrary context-free grammar with alphabet Σ.
We know that there is a context-free grammar G1 that generates Σ∗. In this case, an algorithm
that determines whether L(G1) ⊆ L(G2) also determines whether L(G2) = Σ∗.

However, by Theorem 12.7.3, we know that there is no algorithm that can determine whether
the language of an arbitrary context-free grammar G with input alphabet Σ is Σ∗. Thus our
assumption must be false and there is no algorithm that determines whether L(G1) ⊆ L(G2).

72 CHAPTER 12. UNDECIDABILITY

Chapter 13

µ-Recursive Functions

3. b) The proper subtraction function sub(x, y) was defined in Table 13.2.1 by

sub(x, 0) = x
sub(x, y + 1) = pred(sub(x, y))

where pred is the predecessor function. The functions g = p
(1)
1 and h = pred◦p

(3)
3 formally

define sub. Using g and h in the definition of primitive recursion produces

sub(x, 0) = g(x) = x
sub(x, y + 1) = h(x, y, sub(x, y)) = pred(sub(x, y))

as desired.

5. a)

f(3, 0) = g(3)

= 3

f(3, 1) = h(3, 0, f(3, 0))

= h(3, 0, 3)

= 3 + 3

= 6

f(3, 2) = h(3, 1, f(3, 1))

= h(3, 0, 6)

= 9

b) A closed form for f(3, n) is 3(n+ 1) and f(m,n) = m(n+ 1).

8. d) The values of the predicate

even(y) =

{

1 if y is even
0 otherwise

alternate between 0 and 1. The value of even(y+1) can be obtained directly from even(y)
using proper subtraction.

73

74 CHAPTER 13. µ-RECURSIVE FUNCTIONS

even(0) = 1
even(y + 1) = 1 −̇ even(y)

The right-hand side of the definition by primitive recursion given above uses only constant
functions, proper subtraction, and the previous value of even. Consequently, even is also
primitive recursive.

e) To define half(y) using primitive recursion, we must determine the relationship between
half(y) and half(y + 1).

half(y + 1) =

{

half(y) if y + 1 is odd
half(y) + 1 if y + 1 is even

Translating this into the language of primitive recursion, we obtain the primitive recursive
definition

half(0) = 0
half(y + 1) = half(y) + even(y + 1).

f) If y+1 is not a perfect square, the sqrt(y+1) = sqrt(y). When y+1 is a perfect square,
sqrt(y) is incremented.

sqrt(0) = 0

sqrt(y + 1) = sqrt(y)

+ eq(mult(sqrt(y + 1), sqrt(y + 1)), y + 1).

9. c) The function btw, between, can be obtained from the conjunction of two instances of lt:

btw(x, y, z) = lt(y, x) · lt(x, z).

d) The integer square root function defined in Exercise 7 f) can be used to show that the
relation prsq is primitive recursive. A natural number x is a perfect square if it is the
product of the square root of x with itself. The equality predicate is used in the definition
of prsq to check this condition,

prsq(x) = eq(x, sqrt(x) · sqrt(x)).

11. a) The two-variable predicate

f(x, y) =

{

1 if g(i) < g(x) for all i ≤ y
0 otherwise

is true only when the inequality g(i) < g(x) is satisfied by every natural number i between
0 and y. The bounded product

f(x, y) =

y
∏

i=0

lt(g(i), g(x))

computes f using the primitive recursive function g. Since the family of primitive recursive
functions is closed under bounded products, f is primitive recursive.

e) The bounded sum can be used to count the number of times g(i) = x in the range
0 ≤ i ≤ y. The predicate eq(g(i), x) is 1 only if g(i) = x. The summation

n(x, y) =

y
∑

i=0

eq(g(i), x)

records the number times this occurs in the designated range.

SOLUTIONS TO EXERCISES 75

f) The function n(x, y), defined above, provides the counter needed for the construction of
a function that finds the third occurrence of x in the sequence g(0), g(1), . . . , g(y). The
first i that satisfies the predicate eq(n(x, i), 3) is the third integer whose value g(i) is
x. Bounded minimalization is the primitive recursive tool for finding the first value that
satisfies a predicate:

thrd(x, y) = ge(n(x, y), 3)·
y
µz [eq(n(x, z), 3)].

The factor ge(n(x, y), 3) in the definition of thrd provides the default value whenever
there are fewer than three integers in the range 0 to y for which g assumes the value x.

12. a) First we note that, by definition, no number is a divisor of 0. Thus, the greatest common
divisor of 0 and any number is 0. Finding the greatest common divisor of x and y can be
thought of as a search procedure. The objective is to find the greatest number less than
or equal to x that divides both x and y. The predicate divides(x, x −̇ z) ·divides(y, x −̇ z)
is 1 whenever x −̇ z is a divisor of both x and y. The function

g(x, y) =
x
µz [divides(x, x −̇ z) · divides(y, x −̇ z)]

sequentially examines the predicates

divides(x, x) · divides(y, x)
divides(x, x −̇ 1) · divides(y, x −̇ 1)
divides(x, x −̇ 2) · divides(y, x −̇ 2)

...

The greatest common divisor can be obtained directly from g.

gcd(x, y) = sg(x) · sg(y) · ((x −̇ g(x, y))

The sg predicates handle the special case when one or both of the arguments are 0.

13. The function f is obtained using primitive recursion and the primitive recursive functions g
and min as follows:

f(0) = g(0)

f(y + 1) = min(f(y), g(y + 1))

16. a) The prime decomposition of 18000 is 24 · 32 · 53. This is a Gödel number since it consists
of an initial sequence of the primes. The encoded sequence is 3, 1, 2.

17. a) To construct a primitive recursive one-variable predicate gdn whose value indicates whether
the input is the encoding of a Gödel number, we begin by defining an auxiliary function

g(x) =
x
µz [cosg(divides(x, pn(z)))]

that returns the number of the first prime that does not occur in the prime decomposition
of x. If there are no primes greater than pn(g(x)) that divide x, then x is a Gödel number

Deciding whether there is prime greater than pn(g(x)) that occurs in the prime decom-
position of x seems like it may require an unbounded search. However, we can determine
if there are primes greater than pn(g(x)) that divide x by constructing the product of the
powers of the primes less than pn(g(x)).

gdn(x) = eq(x,

g(x)−1
∏

i=0

pn(i)dec(i,x)+1)

76 CHAPTER 13. µ-RECURSIVE FUNCTIONS

If the product equals x, then all the primes that divide x occur before pn(g(x)). In this
case x is the encoding of a Gödel number. The equality predicate returns zero when there
are primes greater than pn(g(x)) that divide x.

18. If z is the encoding of an ordered pair [x, y], the primitive recursive function gn1(dec(1, z), dec(0, z))
produces the encoding of [y, x].

20. Functions f1 and f2 defined by simultaneous recursion are intuitively computable, the definition
provides a description for calculating the values f1(x, y) and f2(x, y). However, the definition
does not follow the form of a definition by primitive recursion since the computation of f1(x, y+
1) requires both f1(x, y) and f2(x, y).

The encoding and decoding functions can be used to define a two-variable primitive recursive
function f that encodes both f1 and f2. The initial value of f is obtained directly from those
of f1 and f2:

f(x, 0) = gn1(f1(x, 0), f2(x, 0)) = gn1(g1(x), g2(x)).

The functions h1 and h2 and f(x, y) are used to compute the values of the ordered pair
[f1(x, y + 1), f2(x, y + 1)]. The value of f(x, y + 1) is obtained by encoding this ordered pair.

f(x, y + 1) = gn1(h1(x, y, dec(0, f(x, y)), dec(1, f(x, y))),

h2(x, y, dec(0, f(x, y)), dec(1, f(x, y))))

Since each of the functions used in the construction of f is primitive recursive, f is primitive
recursive.

The functions f1 and f2 are obtained directly from f by

f1(x, y) = dec(0, f(x, y))

and

f2(x, y) = dec(1, f(x, y)).

23. b) The value of the function root(c2, c1, c0) is the first nonnegative integral root of the
quadratic equation c2 ·x2+ c1 ·x+ c0. If there is no such root, root(c2, c1, c0) is undefined.
The function

µz[eq(c2 · z
2 + c1 · z + c0, 0)]

obtained using the unbounded µ-operator computes root.

24. Since the new µ-operator extends the original operator to partial predicates, every function
generated using the standard operator is also definable using the extended µ-operator. Thus
every µ-recursive and, consequently, Turing computable function can be obtained in this man-
ner.

Using an argument similar to that in Theorem 13.6.4, we can show that a function f(x1, . . . , xn)
definable using the extended µ-operator is Turing computable. This reduces to showing that
a function obtained from a Turing computable partial predicate p(x1, . . . , xn, z) using the
extended µ-operator is Turing computable. The proof uses the strategy employed in Theorem
13.6.4 for the standard µ-operator. If the evaluation of p(x1, . . . , xn, j) is undefined in step 3,
then the computation never halts indicating that f(x1, . . . , xn) is undefined. Thus the proper
value of µz[p(x1, . . . , xn, z)] is produced by the Turing machine.

The preceding arguments have shown that family of functions obtained utilizing both the
µ-operator and the extended µ-operator are precisely the Turing computable functions.

SOLUTIONS TO EXERCISES 77

28. a) The value of trM(x, y − 1) is the configuration of the computation of M with input x
prior to the yth transition. The value of the new symbol function ns(trM(x, y− 1)) is the
encoding of the symbol to be written on the yth transition. The function prt is defined
by

prt(x, y) = eq(ns(trM(x, y − 1)), 1),

which checks if the symbol to be printed is a 1.

b) Unbounded minimalization µz[prt(x, z)] returns the first value z for which prt(x, z) is true.
Composing this with the sign function produces the desired result when the computation
of M prints a 1. The function

fprt(x) = sg ◦ µz[prt(x, z)]

is undefined if M never prints a 1.

c) If the function fprt were primitive recursive, then we would always obtain an answer
indicating the first occurrence of the printing of a 1 or a default answer (probably 0) if 1
is never printed.

This total function could be used to produce an algorithm for determining whether the
computation of an arbitrary Turing machine M will print a 1 when run with input x.
The answer to this question could be obtained as follows:

1. Build trM.

2. Build prt.

3. Build fprt.

4. Obtain the value fprt(x).

By Exercise 12.7 we know that the problem of determining whether the computation
of an arbitrary Turing machine will print a 1 is undecidable. Consequently, there is no
algorithm capable of making this determination and fprt must not be primitive recursive.

78 CHAPTER 13. µ-RECURSIVE FUNCTIONS

Chapter 14

Time Complexity

1. c) The function f(n) = n2 + 5n + 2 + 10/n is obtained by multiplying the polynomials
in the numerator and dividing each term by n2. Intuitively, n2 is the most significant
contributor to the growth of f . Formally, the rate of growth of f can be obtained directly
from Definition 14.2.1. Clearly, n2 is O(f). Conversely,

n2 + 5n+ 2 + 10/n ≤ n2 + 5n2 + 2n2 + 10n2

= 18n2

for all n > 0. Thus f = O(n2). Combining the two relationships we see that f and n2

have the same rates of growth.

3. e) To show that the factorial function grows faster than an exponential function, we prove
that n! > 2n for all n ≥ 4.

n! =

n
∏

i=0

i

= 2 · 3 · 4 ·
n
∏

i=5

i

> 24 ·
n
∏

i=5

i

> 24 ·
n
∏

i=5

2

> 2n

Thus, setting c to 1 and n0 to 4 we see that 2n ≤ c · n! for all n ≥ n0. Thus, 2
n = O(n!).

f) The inequality n! > 2n for n ≥ 4, established in Exercise 3 (e), is used to prove that n! 6=
O(2n). Assume that n! = O(2n). Then there are constants c and n0 such that

n! ≤ c · 2n,

whenever n ≥ n0. Let m be a number greater than the maximum of n0, 2 ·c, and 4. Then

m! = m · (m− 1)!

> 2 · c · (m− 1)!

> 2 · c · 2m−1

= c · 2m

79

80 CHAPTER 14. TIME COMPLEXITY

with m > n0.

Consequently, there are no constants that satisfy the requirements of Definition 14.2.1
and n! 6= O(2n).

4. It is not the case that 3n = O(2n). If so, then there are constants c and n0 such that 3n ≤ c ·2n

for all n ≥ n0. It follows that (3/2)
n ≤ c for all n greater than n0. Taking the logarithm base

3/2 of each side of this inequality, we see that the assumption that 3n = O(2n) implies that
n ≤ log3/2 c for all n > n0. This is a contradiction since log3/2 c is a constant and we can
select a natural number n larger than this constant. Since the assumption that 3n = O(2n)
produced a contradiction, we conclude that 3n 6= O(2n).

7. b) We will show, directly from the definition of big Θ, that fg ∈ Θ(nr+t).

Since f ∈ Θ(nr), there are positive constants c1, c2, and n0 such that

0 ≤ c1n
r ≤ f(n) ≤ c2n

r

for all n ≥ n0. Similarly, g ∈ Θ(nt) implies there are positive constants d1, d2, and m0

such that
0 ≤ d1n

t ≤ g(n) ≤ d2n
t

for all n ≥ m0.

First we show that fg ∈ O(nr+t). The preceding inequalities show that

f(n)g(n) ≤ (c2n
r) · (d2n

t)

= (c2d2)n
r+t

for all n ≥ max{n0,m0} as desired.

The same approach establishes the lower bound:

f(n)g(n) ≥ (c1n
r) · (d1n

t)

= (c1d1)n
r+t

for all n ≥ max{n0,m0}.

8. c) The length of the input of a Turing machine that computes a function of more than one
variable is considered to be the length of the arguments plus the blanks that separate
them. The Turing machine in Example 9.1.2 computes the binary function of string
concatenation. The input has the form BuBvB with length length(u) + length(v) + 1.

A computation moves through u and then shifts each element of v one position to the
left. For an input of length n, the worst case number of transitions occurs when u = λ
and length(v) = n − 1. The values of the trace function trM are given for the first four
values of n.

n trM(n)
1 4
2 8
3 12
4 16

A computation with input BBvB begins by reading the two blanks that precede v.
Translating each symbol of v requires three transitions. The computation is completed
by returning the tape head to the leftmost tape position. This requires length(v) + 2
transitions. Thus trM(n) = 2 + 3(n− 1) + n+ 1 = 4n.

SOLUTIONS TO EXERCISES 81

11. The computation of a standard machine that accepts the language L = {aibi | 0 ≤ i ≤
50} ∪ {u | length(u) > 100} begins using 100 states to check the length of the input. If the
machine has not encountered a blank after 100 transitions, the computation halts and accepts
the input string.

If the machine reads a blank prior to reading 100 input symbols, the computation

1. moves the tape head to position 0, and

2. runs a machine from that accepts {aibi | i ≥ 0}.

The latter step can be accomplished in (n+2)(n+1)/2 transitions for an input string of length
n.

The maximum number of transitions in the entire computation for an input of length n is

tcM(n) =

{

2n+ 2 + (n+ 2)(n+ 1)/2, if n ≤ 100
101, otherwise.

The asymptotic complexity of M is constant, tcM(n) = Θ(1), since the number of transitions
is constant as n approaches infinity.

13. A one-tape deterministic Turing machine can be designed to accept the language {aibi | i ≥ 0}
in time O(n lg(n)) by marking half of the a’s and half of the b’s on each pass through the input.

The computation begins reading the input, marking every other a with an X, and recording
whether the number of a’s was even or odd. Upon scanning a b, it is marked as well as every
other subsequent b. As with the a’s, the states are used to record parity of the number of
b’s read. If an a is encountered after the first b, the computation halts and rejects the input.
Upon completing the scan of the input, the following halting conditions are checked:

(a) If no a’s and b’s were found, the string is accepted.

(b) If there were a’s but no b’s, the string is rejected.

(c) If there were b’s but no a’s, the string is rejected.

(d) If the parity of the number of a’s and b’s was different, the string is rejected.

If none of the halting conditions were triggered, tape head returns to tape position 0 to make
another pass of the input. On this pass, the X’s are skipped while marking every other a
and b. On the completion of the pass, the termination conditions are checked. The process is
repeated until one of the terminating conditions is satisfied.

The maximum number of transitions for a string of length n occurs with the input an/2bn/2 if
n is even and a(n+1)/2b(n−1)/2 if n is odd. Each iteration of the preceding cycle requires 2n+2
transitions and the maximum number of iterations is dlg(n)e. Thus the maximum number of
transitions is (2n+ 2)dlg(n)e.

The number of transitions could be reduced by one-half if we marked symbols going both
left-to-right and right-to-left. However, this would not alter the big oh evaluation of the time
complexity.

82 CHAPTER 14. TIME COMPLEXITY

Chapter 15

P ,NP , and Cook’s Theorem

1. a) The computations for the string aa are

q0BaaB q0BaaB q0BaaB q0BaaB
` Bq1aaB ` Bq1aaB ` Bq1aaB ` Bq1aaB
` Baq1aB ` Baq1aB ` Baq1aB ` q2BaaB
` Baaq1B ` Bq2aaB ` Bq2aaB

` q2BaaB ` Baq3aB
` Baaq3B

b) The worst-case performance with input an occurs when the computation reads the first
n− 1 a’s in q1 and transitions to q2, stays in q2 and moves left until it reads the first a,
then moves right in state q3 until the computation halts.

c) The time complexity is

tcM(n) =

{

1, if n = 0;
3n− 1, otherwise.

5. a) We will use a proof by contradiction to show that the language

L = {R(M)w | M accepts w using at most 2length(w) transitions}

is not accepted by any deterministic polynomial-time Turing machine. The contradiction
is obtained using diagonalization and self-reference.

Assume that L is in P. Then L is also in P. Since L is in P, there is some Turing machine
M′ that accepts it in polynomial time. The self-reference occurs in asking if R(M′)R(M′)
is in L; that is, does M′ accept R(M′)?

Consider the first possibility, that R(M′)R(M′) is in L. This means that M′ does not accept

R(M′) in 2length(R(M′)) steps. Thus either the computation takes more than 2R(M
′
) or

M′ does not accept R(M′). The first case indicates that the computations of M′ are not
polynomially bounded and the second case indicates that R(M′)R(M′) is not in L. Both
of these possibilities yield a contradiction.

The second possibility is that R(M′)R(M′) is not in L. This means that M′ accepts R(M′)
in at most 2length(R(M′)) transitions. Consequently R(M′)R(M′) is in L, a contradiction.

Both possibilities, that R(M′)R(M′) is in L and R(M′)R(M′) is not in L, produce a
contradiction. Thus our assumption could not be true and the language L is not in P.

83

84 CHAPTER 15. P,NP, AND COOK’S THEOREM

9. Intuitively, the polynomial time bound p(n) can be used to terminate all computations of M
that use more than p(n) transitions. To accomplish this, a machine M′ is constructed that has
one more tape than M, which we will call the counter tape. The computation of M′

1. Writes p(n) 1 ’s on the counter tape and repositions the tape head at the beginning of
the string of 1 ’s.

2. While the counter tape head is reading a 1, M′

- Moves the counter tape head one position to the right.

- If a transition of M is defined, then M′ simulates the transition on original tapes.
Otherwise M′ halts and returns the same result as M.

3. M′ halts and does not accept when a B is read on the counter tape.

For every string u ∈ L(M), there is at least computation that requires p(n) or fewer transitions
and accepts u. The simulation of this computation in M′ will also accept u. Clearly, L(M′) is
contained in L(M) since it only accepts strings that are accepted by M. Thus M′ accepts L(M)
and halts for all input strings.

The computation of M′ for an input string u of length n consists of the writing p(n) 1 ’s on the
counter tape and simulating the computation of M. The number of transitions in the simulation
is bounded by p(n) and writing p(n) 1 ’s can be accomplished in time polynomial in n.

12. In the first printing of the book, the state diagram is incorrect. The arcs on the bottom should
go from right-to-left and there should be a transition B/B L on the arc from q6 to qf . The
answers given are for the state diagram with these modifications.

a)

q0BabbaB ` #abq5bBB

` #q1abbaB ` #aq5bdBB

` #aq2bbaB ` #q5addBB

` #abq3baB ` q5#cddBB

` #abbq4aB ` Bq6cddBB

` #abbBq4B ` qfBcddBB

` #abbq5BB

b) Any string will cause the maximum number of transitions. The computation reads the
entire string from left-to-right, then again from right-to-left, and ends with two transitions
to erase the endmarker.

c) tcM(n) = 2n+ 4

d) The function computed by the machine is not a reduction of L to Q. The string ab is
mapped to cd; the former is not in L while the latter is in Q.

15. Any combination of three of the clauses x, y, z, and ¬x ∨ ¬y ∨ ¬z is satisfiable. The four
clauses, however, are unsatisfiable. The satisfaction of the clause ¬x ∨ ¬y ∨ ¬z requires the
truth assignment for one of the Boolean variables to be 0. This precludes the clause that
consists of that variable alone from being satisfied.

17. The assumption the P = NP is critical in the arguments that follow. Of course, we do not
know if this assumption is true.

SOLUTIONS TO EXERCISES 85

a) Let L be a language in NP that is neither empty nor is its complement empty. That
means that are strings u and v such that u ∈ L and v ∈ L.

To prove that L is NP-complete, we must show that every language Q in NP is reducible
to L in polynomial time. Since NP = P, we know that there is a Turing machine M that
accepts Q in polynomial time. A polynomial time reduction of Q to L can be obtained
as follows: For a string w

1. Run M to determine if w ∈ Q.

2. If w ∈ Q, then erase the tape and write u in the input position. Else erase the tape
and write v in the input position.

This is clearly a reduction of Q to L. Moreover, it can be accomplished in polynomial
time since the computation of Q is polynomial.

b) In part (a) we have shown that every language in NP other than ∅ and its complement
is NP-complete. These languages clearly are in P = NP , but are not NP-complete. To
be able to reduce a nonempty language Q to the ∅, we must map strings in Q to a string
in ∅ and strings not in Q to a string not in ∅. Unfortunately, we cannot do the former
since there are no strings in ∅.

86 CHAPTER 15. P,NP, AND COOK’S THEOREM

Chapter 16

NP-Complete Problems

1. A formula is in 2-conjunctive normal form if it is the conjunction of clauses each of which has
two literals. The 2-Satisfiability Problem is to determine whether an arbitrary 2-conjunctive
normal form is satisfiable.

We will describe a polynomial-time algorithm that solves the 2-Satisfiability Problem. The
algorithm constructs a truth assignment if the formula is satisfiable. If not, the attempt to
construct the assignment fails.

Before outlining the strategy, we first note that the assignment of a truth value to a variable
may be used to reduce the length of a 2-conjunctive normal form formula that needs to be
considered for determining satisfiability. Consider the formula

(x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) ∧ (x1 ∨ ¬x4).

If t(x1) = 1, then any clause that contains x1 can be deleted since it is satisfied by t. This
produces

(¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3).

Moreover, the occurrence of the literal ¬x1 can be deleted from clauses since its value will not
satisfy the clause. Applying this reduction yields

(¬x2 ∨ x3) ∧ (x3).

Since x3 occurs as a singleton, it is necessary to assign t(x3) = 1 to satisfy the formula. Doing
the reduction produces

(¬x2).

The only truth assignment that satisfies this clause is t(x2) = 0.

In this example, we set t(x1) = 1 and reduced based on this truth assignment. When all clauses
are removed following the preceding rules, we have succeeded in constructing a satisfying truth
assignment. In the preceding reduction, no value has been assigned to the variable x4. This
indicates that the value assigned to x4 is irrelevant; either choice will yield an assignment that
satisfies the formula.

Before describing the algorithm in detail, let us consider two more examples; one which fails
to find a satisfying truth assignment and one which requires several steps to complete. We
attempt to find a satisfying truth assignment for

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (x2 ∨ x3).

87

88 CHAPTER 16. NP-COMPLETE PROBLEMS

Setting t(x1) = 1 yields
(¬x2) ∧ (¬x3) ∧ (x2 ∨ x3).

Reducing by setting t(x2) = 0 produces the contradictory clauses

(¬x3) ∧ (x3).

The reduction fails because there is no assignment that can satisfy both of these clauses. At
this point we conclude that there is no satisfying truth assignment that can be obtained by
setting t(x1) to 1. The next step would be to begin the process by setting t(x1) = 0 and trying
to find a satisfying truth assignment with this assignment to x1.

Our final example illustrates the need to select the truth value for more than one variable to
produce a satisfying assignment. The result of assigning t(x1) = 1 in

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3 ∨ x2) ∧ (x4 ∨ x5)

produces
(x3) ∧ (¬x3 ∨ x2) ∧ (x4 ∨ x5),

requiring t(x3) = 1 in order to satisfy the formula. The effect of this assignment yields

(x2) ∧ (x4 ∨ x5),

which requires t(x2) = 1 in a satisfying truth assignment. The resulting formula

(x4 ∨ x5),

matches neither of the termination conditions; the formula is not empty and it does not contain
contradictory clauses. We continue the process by selecting a truth assignment for one of the
variables in (x4 ∨ x5) and applying the reduction procedure.

Each reduction process is initiated with the selection of a truth assignment for a variable xi.
If the reduction does not produce contradictory clauses, this truth assignment, along with of
those obtained during the reduction, are incorporated into the final truth assignment.

To describe the algorithm we let u = w1 ∧ · · · ∧ wm be a 2-conjunctive normal form formula
and V = {x1, . . . , xn} be the set of variables of u. The objective is to build a satisfying truth
assignment t on V. For a formula v, we use the reduction procedure to build a truth assignment
T on the set of variables in v, denoted var(v). If the reduction does not fail, we then assign
the truth values of T to t.

The algorithm proceeds as follows:

1. Let v = u.

2. Set T (x) ↑ for all x ∈ var(v), and pick a variable xi in var(v).

3. Set T (xi) = 1 and reduce v.

4. If the reduction did not fail and produced the formula v′, then

- Set t(x) = T (x) for all x ∈ var(v) for which T (x) is defined.

- If v′ is empty, continue with step 8,

- otherwise set v = v′ and continue with step 2.

5. The reduction for T (xi) = 1 has failed. Set T (xi) = 0 and reduce v.

6. If the reduction did not fail and produced the formula v′, then

- Set t(x) = T (x) for all x ∈ var(v) for which T (x) is defined.

SOLUTIONS TO EXERCISES 89

- If v′ is empty, continue with step 8,

- otherwise set v = v′ and continue with step 2.

7. If both reductions failed, the formula is unsatisfiable.

8. For each xj with t(xj) ↑, select any truth value for t(xj). The truth assignment t satisfies
u.

The truth assignment t clearly satisfies u, since the reduction removes a clause only when it
has been satisfied. Moreover, the algorithm will produce a truth assignment whenever u is
satisfiable. Assume that u is satisfied by some truth assignment t′. The selection of truth values
T (xi) = t′(xi) in steps 3, 5, and 7 will produce the truth assignment t = t′. Consequently, we
are assured of the construction of some truth assignment whenever u is satisfiable.

Once a variable is assigned a truth value in step 4 or 6, that value does not change. At most
2n reductions are possible and each reduction can alter at most m clauses. Thus the algorithm
completes in time polynomial to the number of variables and clauses in the formula.

6. A guess-and-check strategy that yields a nondeterministic polynomial time solution to the
minimum set cover problem is straightforward. The guess nondeterministically selects a sub-
collection C′ of C of size k. The check verifies that every element in S is in the union of the
sets in C′.

We show that the Minimum Set Cover Problem is NP-hard by reducing the 3-Satisfiability
Problem to it. First we will outline the construction of a set S, a collection C of subsets of
S, and a number k from a 3-conjunctive normal form formula u. We will then show that S is
covered by k sets in C if, and only if, u is satisfiable.

To accomplish the reduction, we must reformulate truth assignments and clauses in terms of
sets. Let

u = w1 ∧ · · · ∧ wm

= (u1,1 ∨ u1,2 ∨ u1,3) ∧ · · · ∧ (um,1 ∨ um,2 ∨ um,3)

be a 3-conjunctive normal form formula with m clauses. The variables of u are {x1, . . . , xn}
and the symbol uj,k represents the kth literal in clause wj .

We will construct the elements of S and the sets of C in three steps. The sets are built so that
the smallest cover C′ of S consists of 2mn sets from C. We begin with the sets that represent
truth assignments. For each variable xi, construct the sets

{¬xi,1, ai,1, bi,1}

{xi,1, ai,2, bi,1}

{¬xi,2, ai,2, bi,2}

{xi,2, ai,3, bi,2}

{¬xi,3, ai,3, bi,3}

{xi,3, ai,4, bi,3}

...

{¬xi,m, ai,m, bi,m}

{xi,m, ai,1, bi,m}

There are 2mn sets of this form, 2m for each variable xi. The elements xi,j ,¬xi,j , i = 1, . . . , n
and j = 1, . . . ,m, and ai,1, . . . , ai,m and bi,1, . . . , bi,m, i = 1, . . . , n are added to the set S.

90 CHAPTER 16. NP-COMPLETE PROBLEMS

The preceding sets are the only sets of C that contain the elements ai,1, . . . , ai,m and bi,1, . . . , bi,m.
For a fixed variable i, we can cover ai,1, . . . , ai,m and bi,1, . . . , bi,m with m of these sets. This
is possible only if we choose all the sets that contain ¬xi,k or all of the sets that contain xi,k.

This choice provides our intuition for a truth assignment. If the cover contains all the sets with
¬xi,k, we associate this with a truth assignment that assigns 1 to xi,k. In a like manner, if the
cover contains all the sets with xi,k, we associate this with a truth assignment that assigns 0
to xi,k.

Now we add elements and sets used to represent the clauses of u. For each clause wj ,

- If the literal xi occurs in wj , then construct set {xi,j , s1,j , s2,j}.

- If the literal ¬xi occurs in wj , then construct set {¬xi,j , s1,j , s2,j}.

These are the only sets of C that contain s1,j and s2,j . Thus at least one of the three sets
generated from wj is required for any cover of S.

To this point, the cover that we are building requires mn+m sets: mn from the truth setting
sets and m from the clause sets. Each of the ai,j ’s, bi,j ’s, s1,j ’s, and s2,j are covered by such a
selection. If the sets from the truth setting component for a variable xi all contain ¬xi,j , then
the xi,j ’s are not covered. Similarly, if the sets from the truth setting component all contain
xi,j , then the ¬xi,j ’s are not covered. We must add more sets so that these elements will be
covered. We will refer to these sets as the completion sets, since they complete the coverage
of the xi,j ’s or ¬xi,j ’s

For each variable xi and clause wj , we add the sets

{¬xi,j , c1,k, c2,k}

{xi,j , c1,k, c2,k}

for k = 1, . . . ,m(n− 1). The elements c1,k and c2,k appear only in these sets. Thus m(n− 1)
completion sets are necessary to cover the c’s

This completes the construction of S and C from u. From the form of the sets, we see that a
cover of S must contain at least 2mn sets from C. We now must show that u is satisfiable if,
and only if, there are 2mn sets in C that cover S.

If u is satisfied by a truth assignment t, we can build a cover of S consisting of 2mn sets as
follows. For each variable xi,

- If t(xi) = 1, then add the mn sets of the form {¬xi,1, ai,k, bi,k} to C′.

- Otherwise add the sets {xi,1, ai,k, bi,k} to C′.

Each clause wj is satisfied by at least one literal. For one of the satisfying literals we will add a
clause set to C′. If t(xi) = 1 and xi is in wj , then add the set {xi,j , s1,j , s2,j} to C′. If t(xi) = 0
and ¬xi is in wj , then add {¬xi,j , s1,j , s2,j} to C′. In either case, this set covers s1,j and s2,j

and adds one set to C′.

For a clause wj that was satisfied by a positive literal xi in the preceding step, the elements
xt,j , where t 6= i, are not covered by our sets. These are covered by the addition of the m− 1
completion sets

{xt,j , c1,k, c2,k},

where t 6= i and a different k is selected for each set. These m−1 sets simultaneously complete
the coverage of the xt,j ’s and the c1,k’s and c2,k’s.

SOLUTIONS TO EXERCISES 91

Similarly, for a clause wj that was satisfied by a negative literal ¬xi, the elements ¬xt,j , where
t 6= i, are not covered by the truth setting or clause sets. These are covered by the addition of
the m− 1 sets of the form

{¬xt,j , c1,k, c2,k},

where t 6= i.

Thus we have a total of mn truth setting sets, m clause sets, and m(n− 1) completion sets for
a cover of S by 2mn sets.

Conversely, if S is covered by 2mn sets from C ′. The cover must consist of mn truth setting
sets, m linking sets, and m(n − 1) of the completion sets. We can obtain a truth assignment
from the truth setting sets in C ′. If the sets {xi,1, ai,k, bi,k} are in the cover, then t(xi) = 0;
otherwise, t(xi) = 1.

For each clause wj , one set of the form {xi,j , s1,j , s2,j} or {¬xi,j , s1,j , s2,j} is in the cover. In
the former case, the xi satisfies wj . In the latter case, the ¬xi is satisfies wj .

8. We will show that the Longest Path Problem is NP-hard by reducing the Hamiltonian Circuit
Problem to it. The transformation converts a graph G = (N, A) into a graph G′ = (N′, A′)
in two steps.

We construct G′ from G by adding three nodes and the arcs incident to these nodes. Let N
= {v1, . . . , vn} be the set of nodes of G. First we make a copy v′1 of v1. For each arc [vi, v1] in
A, vi 6= v1, add an arc [vi, v

′
1] as illustrated in the diagram below.

v4

v3 v3

v1 v1

yx

v2 v4v2

v3

v1 v1'v1'

v4v2

The construction of G′ is completed by adding nodes x and y and arcs [x, v1] and [v′1, y]. The
reduction is complete by selecting the number k = n + 2 as the input in the Longest Path
Problem.

To show that the preceding construction is a reduction, we must show that G has a tour if,
and only if, G′ has an acyclic path of length n+ 2.

Assume that G has a tour. The tour can be written as a path v1, vi2 , . . . , vin
, v1 of length n.

Replacing the v1 at the end of the path with v′1 and adding the arcs [x, v1] and [v′1, y] creates
an acyclic path of length n+ 2 in G′.

Now assume that G′ has an acyclic path of length n+ 2. Since G′ has n+ 3 nodes, this path
must visit every node. To reach nodes x and y, the path must begin with the arc [x, v1] and
end with [v′1, y]. Deleting these produces an acyclic path with endpoints v1 and v′1. Equating
v1 and v′1 produces a tour v1, vi2 , . . . , vin

, v1 in G.

92 CHAPTER 16. NP-COMPLETE PROBLEMS

9. a) The Multiprocessor Scheduling Problem can be converted into a decision problem by
adding a deadline for the computations as follows:

Input: set of tasks A,
length of task function l : A→ N
number of processors k, and
deadline m

Output: yes, if there is a partition A1, . . . ,Ak such
that l(Ai) ≤ m for all i,

no, otherwise.

With the deadline, the problem is to determine if there an assignment of tasks to proces-
sors that ensures that all tasks will be completed by time m.

b) Following the strategy employed in the proof of the NP-completeness of the Bin Packing
Problem, we will reduce the Partition Problem to the Multiprocessor Scheduling Problem.
The reduction transforms an instance of the Partition Problem into an instance of the
Multiprocessor Scheduling Problem. The transformation is accomplished by the mapping

Partition Multiprocessor
Scheduling

Set A A
Function v l = v
Number of sets k = 2
Bound m = v(A)/2

Now we must show that an instance (A, v) of the Partition Problem has a solution if, and
only if, the corresponding instance (A, l, k, m) of the Multiprocessor Scheduling Problem
has a solution.

Assume that there is a subset A′ ⊆ A such that v(A′) = v(A)/2. Then the partition
A1 = A′, A2 = A − A′ is a solution to the corresponding Multiprocessor Scheduling
Problem.

Conversely, assume that the Multiprocessor Scheduling Problem has a solution A1 and
A2. Since A = A1∪A2, l(A) = l(A1)+ l(A2). However, satisfaction of the deadline bound
ensures us that l(A1) ≤ l(A)/2 and l(A2) ≤ l(A)/2. It follows that l(A1) = l(A2) = l(A)/2
and A1 is a solution to the Partition Problem.

10. To show that the Integer Linear Programming Problem is NP-hard, we reduce the question
of the satisfiability of a 3-conjunctive normal form formula to that of satisfying a system of
integral inequalities. Let

u = w1 ∧ w2 ∧ · · · ∧ wm

be a 3-conjunctive normal form formula with clauses wi = ui,1 ∨ ui,2 ∨ ui,3 and let V =
{x1, x2, . . . , xn} be the set of Boolean variables occurring in w.

We will consider the literals as variables that may assume integer values. For each pair of
literals xi and ¬xi in V, the four equations

1. xi ≥ 0
2. ¬xi ≥ 0
3. xi + ¬xi ≥ 1
4. −xi − ¬xi ≥ −1

are satisfied only if one of xi and ¬xi is one and the other is 0. A set of inequalities 1–4) is
constructed for each variable xi in V. Satisfying the 4n inequalities defines a truth assignment
for V. For each clause wi in u, we define the inequality

SOLUTIONS TO EXERCISES 93

5. ui,1 + ui,2 + ui,3 ≥ 1,

where ui,j is the literal in the jth position of clause i. This inequality is satisfied only if one
of the literals in the clause is satisfied.

An integer linear programming system Ax ≥ b can be constructed from the 4 · n inequalities
whose satisfaction defines a truth assignment for the variables of V and the m inequalities the
represent the clauses. The matrix A has a column for each literal xi and its negation ¬xi. A
row of A consists of the coefficients of the left-hand side of one of the 4 · n +m inequalities.
The column vector b is obtained from the right-hand side of the inequalities. The system Ax
≥ b is solvable if, and only if, the solution vector x defines a truth assignment that satisfies u.
Clearly, a representation of A and b can be constructed in polynomial time from the clause u.
Thus the Integer Linear Programming Problem is NP-hard.

13. Consider an instance of the Bin Packing Problem with items A = {a1, . . . , an}, size function
s, and bin size m with the optimal number of bins denoted b∗. We will show that the first-fit
algorithm generates a packing which requires at most 2b∗ bins.

Let

T =

n
∑

i=1

s(ai),

be the total size of the items in the set A. T can be used to obtain lower bound on the number
of bins in the optimal solution:

b∗ ≥ dT/me.

First we note that at the completion of the first-fit algorithm, there is at most one bin that is
less than half full. If a packing produces two bins numbered r and s that are both less than
half full, then that packing could not have been produced by the first-fit algorithm. Assume
that packing bin r occurred before packing bin s. When encountering the items in bin s, the
first-fit algorithm would have placed these items into bin r. Thus whatever strategy was used
to assign the items, it was not the first-fit algorithm.

Now assume that d2T/me+ 1 or more bins are used in the first-fit packing. By the argument
in the preceding paragraph, at least d2T/me are more than half full. Thus the total size of the
contents is greater than

m/2d2T/me ≥ T,

which is a contradiction since T is the sum of the size of all the ai’s.

Thus we conclude that at most d2T/me = 2dT/me = 2b∗ are required in the solution produced
by the first-fit algorithm.

15. We will show that the modification to the greedy algorithm produces a 2-approximation algo-
rithm for the Knapsack Problem. Let S = {a1, . . . , an} be the set of objects, b the size bound,
and s : S→ N and v : S→ N be the size and value functions, respectively. Also let c∗ be the
value of the optimal solution and cg be the value produced by the greedy algorithm.

We assume that the items have been sorted by relative value,

v(a1)/s(a1) ≥ v(a2)/s(a2) ≥ · · · ≥ v(an)/s(an),

as required by the greedy algorithm and that every item in the list has size at most b. Any
item with size greater than b can be removed from consideration since it cannot appear in a
solution.

If all the items fit into the knapsack, then the optimal solution consists of all the items in S
and this solution is discovered by the greedy algorithm.

94 CHAPTER 16. NP-COMPLETE PROBLEMS

Now we consider the case where
n
∑

i=1

s(ai) > b.

Let ak be the first item not able to be put into the knapsack by the greedy algorithm. Then

k−1
∑

i=1

v(ai) ≤ cg ≤ c∗.

The elements a1, a2, . . ., ak provide an optimal solution for a Knapsack Problem with the same
set S but having size bound b′ =

∑k
i=1 s(ai). The total value for this problem is

∑k
i=1 v(ai) =

c′. Now c∗ ≤ c′ since any set of items that can be packed into a knapsack with size bound b
can also be packed into the larger knapsack with size bound b′.

Let a∗ denote the item that has the largest value in S. Since a∗ has the maximum value of
any item in S, it follows that v(a∗) ≥ v(ak). Combining the inequalities, v(a∗) ≥ v(ak) and
∑k−1

i=1 v(ai) ≤ cg we get

max{v(a∗), cg}

≥ max
{

v(ak),

k−1
∑

i=1

v(ai)
}

≥
(

v(ak) +

k−1
∑

i=1

v(ai)
)

/2

≥
(

k
∑

i=1

v(ai)
)

/2

≥ c′/2

≥ c∗/2

as desired. The third step follows from the inequality

max{x, y} ≥ (x+ y)/2

that compares the maximum and the average of two numbers.

Chapter 17

Additional Complexity Classes

2. A three-tape Turing machine can be designed to accept the language {aibi | i ≥ 0} in loga-
rithmic space. The input is on tape 1 and tapes 2 and 3 serve as counters. Using the binary
representation, the number of a’s that have been read is recorded on tape 2 and the num-
ber of b’s on tape three. A computation consists of two steps: accumulating the counts and
comparing the results. The machine accepting {aibi | i ≥ 0}

1. Reads the input on tape 1 and

- If an a is read after a b, the computation halts and rejects the input.

- On reading an a, the counter on tape 2 is incremented.

- On reading a b, the counter on tape 3 is incremented.

2. After processing the input, the strings on tapes 2 and 3 are compared.

- If the strings are identical, the input is accepted.

- Otherwise, it is rejected.

The worst case performance for a string of length n occurs with the input string an. In this
case, the counter on tape 2 uses dlg(n)e+ 1 tape squares.

3. The tape bound limits the number of configurations that can occur in an accepting computa-
tion. By Corollary 17.3.3, we know that the number of transitions is bounded by cs(n), where
c is determined by the number of states and tape symbols of M.

The strategy of employing a counter tape to terminate computations in which the number of
transitions exceeds the bound can be used to construct a Turing machine M′ that accepts L
and halts for all inputs. This strategy was described in the solution to Exercise 9 in Chapter
15. The machine M′ is no longer subject to the space bound, but it does demonstrate that L
is recursive.

7. We sketch the design of a one-tape deterministic machine M for which every computation with
input of length n > 1 reads exactly 2n tape squares. The input alphabet for M is {a}.

For an input string an, the computation begins with tape configuration BanB. The computa-
tion begins by writing a # in tape position 0 and reading the input. If the input string has
length 0, 1, or 2. The computation terminates after reading the entire input string. For input
of length 2, the computation reads the initial blank, the input aa, and the following blank
using 4 tape squares as required.

For computations with input an, n > 2, we construct a loop that iteratively doubles the length
of a string produced on previous iteration. The objective is to construct a string of length 2n

95

96 CHAPTER 17. ADDITIONAL COMPLEXITY CLASSES

on the tape beginning at position 0. Since this string must overwrite the input string, we will
use the additional tape symbols to differentiate the input from the generated string.

The string beginning at position 0 that has length 4, 8, 16, and so forth will consist of #, b’s,
c’s and X’s and be referred to as the generated string. Each time we double the generated
string, we will mark one input symbol as processed. The c’s represent unprocessed input that
are already in the generated string and the a’s represent unprocessed whose tape positions
have not already been incorporated into the string. After all the a’s have been changed to b’s
or c’s, the generated string is expanded by adding X’s.

The computation will halt when all the input symbols have been processed. The meanings
associated with the tape symbols are

left tape boundary marker
a, a′ unprocessed input symbol
c, c′ unprocessed input symbol in the generated string
b, b′ processed input symbol
X, X ′ elements added to the generated string beyond the n− 1st

tape position
Y elements used in the copying

The symbols with primes are used in the extension of the generated string.

As previously noted, the computation begins by writing a # in tape position 0 and reading
the input. For input of length greater than 2, the final a is erased and the head returns to
tape position 0. The first a in the input is then changed to b and the second a is changed to a
c. If the next symbol is blank, an X is written. Otherwise, the next a is also changed to a c.
This produces the tape configuration #bcX for an input string of length 3 and #bccan−4 for
an input of length 4 or more.

The # and b indicate that two symbols have been processed and the length of the generated
string is 4.

The loop that generates the string proceeds as follows:

(a) The tape head moves to the right to find an a or c. If none is found, the computation
halts.

(b) The tape head returns to position 0.

(c) One symbol at a time, each symbol b, c, X in the generated string is replaced by a b′, c′,
X ′ and a symbol is added to the end of the generated string.

- If an a is encountered, it is changed to an a′.

- If a blank is encountered, it is changed you Y .

(d) After writing the final Y or a′, the tape head returns to position 0. On this pass it changes
Y and X ′ to X, a′ and c′ to c, and b′ to b.

(e) The first occurrence of an a or c is changed to a b.

(f) The tape head returns to position 0 and the computation continues with step a).

For example, for input aaaaa, the tape configurations at the beginning of each loop are

#bccaBBBBBBBBBBBB16

#bbccXXXBBBBBBBBB16

#bbbcXXXXXXXXXXXB16

#bbbbXXXXXXXXXXXX16

SOLUTIONS TO EXERCISES 97

12. Doubling the amount of available tape does not change the set of languages that can be
accepted. We show that a language accepted by a Turing machine M whose computations
require at most 2s(n) tape squares can also be accepted by Turing machine M′ with tape
bound s(n). By Theorem 17.2.2, we can restrict our attention to Turing machines with one
work tape.

Let M = (Q, Σ, Γ, δ, q0, F) be a Turing machine whose computation have a 2s(n) tape bound.
The input and tape alphabets Σ′ and Γ′ of M′ are

Σ′ = Σ, and
Γ′ = {B} ∪ (Γ× Γ× {1, 2}).

Since M′ is designed to accept L(M), the input alphabets of M and M′ are identical. The
tape alphabet of M′ has triples [x, y, i] with x, y ∈ Γ and i ∈ {1, 2}. The reduction in amount
of tape required by the computations of M′ is achieved by the storing more information in a
single tape symbol; a tape symbol of M′ contains two symbols from M. The integer value in
the ordered triple indicates which of the two symbols from Γ would be scanned by M.

When M′ reads a B on the work tape, M′ interprets the blank as the triple [B,B, 1] and
the transition converts it into a triple. The transition function δ′ of M′ is obtained from the
transition function δ of M as follows:

Transition of M Transitions of M′

δ(qi, a, x) = [qj ; b, d; z,R] δ′(qi, a, [x, y, 1]) = [qj ; b, d; [z, y, 2], S]
δ′(qi, a, [y, x, 2]) = [qj ; b, d; [y, z, 2], R]

δ(qi, a, x) = [qj ; b, d; z, L] δ′(qi, a, [x, y, 1]) = [qj ; a, d; [z, y, 1], L]
δ′(qi, a, [y, x, 2]) = [qj ; b, d; [y, z, 1], S]

δ(qi, a, B) = [qj ; b, d; z,R] δ′(qi, a, B) = [qj ; b, d; [z,B, 2], S]

δ(qi, a, B) = [qj ; b, d; z, L] δ′(qi, a, B) = [qj ; b, d; [z,B, 1], L]

where x, y, z are elements of Γ, d ∈ {L,R}, and S indicates that the tape head remains
stationary in the transition.

The computation of M′ with an input string u simulates that of M with u but reads at most
s(n) tape squares on the work tape.

15. The NP-hardness of a P-space complete language follows directly from the definition of P-
Space and the inclusions shown in Figure 17.4. Let Q be a P-Space complete language. This
means that Q is in P-Space and that every language in P-Space is reducible to Q in polynomial
time. Since NP is a subset of P-space, it follows that every language in NP is reducible to Q
in polynomial time and, consequently, Q is NP-hard.

98 CHAPTER 17. ADDITIONAL COMPLEXITY CLASSES

Chapter 18

Parsing: An Introduction

2. The subgraph of the graph of the grammar G consisting of all leftmost derivations of length
three or less is

Level

ABS

aS

10

aB aBB

aba

B

ba

BB BBB

baB

abAB
ababAB

ababB

aaS

aaaS

aaAB

aaB

aAB aabAB

aabB

abB abBB

abba

2 3

5. The search tree created by Algorithm 18.2.1 while parsing ((b)) is given below. The nodes on
each level are listed in the order of their generation.

99

100 CHAPTER 18. PARSING: AN INTRODUCTION

S —A

A + T

(A + T)

(A) + T

T + T + T

A + T + T + T

b + T

A + T + T

T + T

T

b

(b)

(A)

(T)
((A))

((T)) ((b))

((A + T))

(T + T)

(T) + T

(A + T) + T

(A) + T + T

T + T + T + T

A + T + T + T + T

(A + T + T)

b + T + T

(b + T)

((A) + T)

((A)) + T

(T + T + T)

(A + T + T + T)

(b) + T

(T + T) + T

(A + T + T) + T

(T) + T + T

(A + T) + T + T

b + T + T + T

(A) + T + T + T

T + T + T + T + T

A + T + T + T + T + T

The derivation of ((b)) is obtained by following the arcs from the root S to the goal node ((b)).

Derivation Rule

S ⇒ A S → A
⇒ T A→ T
⇒ (A) T → (A)
⇒ (T) A→ T
⇒ ((A)) T → (A)
⇒ ((T)) A→ T
⇒ ((b)) T → b

11. Algorithm 18.4.1 will not terminate when run with input string aa and grammar

S → A | a | aa
A→ S

The rule S → a establishes Sa as the result of the first reduction for the string aa. The parse
proceeds by alternating reductions with the rule A→ S and the rule S → A.

Chapter 19

LL(k) Grammars

2. a) The lookahead sets are given for the rules of the grammar. The lookahead set for a
variable A is the union of the lookahead sets of the A rules.

Rule Lookahead set
S → ABab {abab, acab, aab, cbab, ccab, cab}
S → bAcc {bacc, bccc}
A→ a {abab, acab, aab, acc}
A→ c {cbab, ccab, cab, ccc}
B → b {bab}
B → c {cab}
B → λ {ab}

3. b) The FIRST1 and FOLLOW1 sets for the variables of the grammar are

Variable FIRST1 FOLLOW1

S a,# λ
A a a,#
B a #

To determine whether the grammar is LL(1), the techniques outlined in Theorem 19.2.5
are used to construct the lookahead sets from the FIRST1 and FOLLOW1 sets.

Rule Lookahead set
S → AB# {a,#}
A→ aAb {a}
A→ B {a,#}
B → aBc {a}
B → λ {#}

Since the lookahead sets for the alternative A rules both contain the symbol a, the gram-
mar is not strong LL(1).

6. a) Algorithm 19.4.1 is used to construct the FIRST2 sets for each of the variables of the
grammar

S → ABC###

A→ aA | a

B → bB | λ

C → cC | a | b | c.

101

102 CHAPTER 19. LL(K) GRAMMARS

The rules of the grammar produce the following assignment statements for step 3.2 of the
algorithm.

F (S) := F (S) ∪ trunc2(F
′(A)F ′(B)F ′(C){cc})

F (A) := F (A) ∪ trunc2({a}F
′(A)) ∪ {a})

F (B) := F (B) ∪ trunc2({b}F
′(B))

F (C) := F (C) ∪ trunc2({c}F
′(C)) ∪ {a, b, c}

The algorithm is traced by exhibiting the sets produced after each iteration.

Step F (S) F (A) F (B) F (C)
0 ∅ ∅ {λ} ∅
1 ∅ {a} {λ, b} {a, b, c}
2 {aa, ab, ac} {a, aa} {λ, b, bb} {a, b, c, ca, cb, cc}
3 {aa, ab, ac} {a, aa} {λ, b, bb} {a, b, c, ca, cb, cc}

The rules that contain a variable on the right-hand side generate the assignment state-
ments used in steps 3.2.2 and 3.2.3 of Algorithm 18.5.1. The rules S → ABC##,
B → bB, and C → cC produce

FL(C) := FL(C) ∪ trunc2({##}FL′(S))
= FL(C) ∪ {##}

FL(B) := FL(B) ∪ trunc2(FIRST2(C){##}FL′(S))
= FL(B) ∪ {a#, b#, c#, ca, cb, cc}

FL(A) := FL(A) ∪ trunc2(FIRST2(B)FIRST2(C){##}FL′(S))
= FL(A) ∪ {a#, b#, c#, ba, bb, bc}

FL(B) := FL(B) ∪ FL′(B)

FL(C) := FL(C) ∪ FL′(C)

The last two assignment statements may be omitted from consideration since they do not
contribute to the generation of FL(B) and FL(C).

Step FL(S) FL(A) FL(B) FL(C)
0 {λ} ∅ ∅ ∅
1 {a#, b#, c#, ba, bb, bc} {a#, b#, c#, ca, cb, cc} {##} ∅
2 {a#, b#, c#, ba, bb, bc} {a#, b#, c#, ca, cb, cc} {##} ∅

The length two lookahead sets are used to construct the FIRST2 and FOLLOW2 sets.

Rule Lookahead set
S → ABC## {aa, ab, ac}
A→ aA {aa}
A→ a {aa, ab, ac}
B → bB {ba, bb, bc}
B → λ {a#, b#, c#, ca, cb, cc}
C → cC {ca, cb, cc}
C → a {a#}
C → b {b#}
C → c {c#}

SOLUTIONS TO EXERCISES 103

The lookahead sets of the A rules show that the grammar is not strong LL(2).

7. To establish part (3) of Lemma 19.2.2, we must show that the identity

FIRSTk(au) = {av | v ∈ FIRSTk−1(u)}

holds for all k ≥ 1. For convenience we let FIRST0(u) = {λ} for all strings u. Let v ∈

FIRSTk−1(u) for some k ≥ 1. This implies that there is a derivation u
∗
⇒ vx where vx ∈ Σ∗,

length(v) = k − 1 or length(v) < k − 1 and x = λ. Consequently, au
∗
⇒ avx and av is in

FIRSTk(au).

The preceding argument shows that FIRSTk(au) ⊆ {a}FIRSTk−1(u). We must now establish

the opposite inclusion. Let av ∈ FIRSTk−1(au). Then au
∗
⇒ avx where length(v) = k − 1 or

length(v) < k − 1 and xλ. The derivation u
∗
⇒ vx, obtained by deleting the leading a from

the preceding derivation, shows that v ∈ FIRSTk(u).

8. We will use a proof by contradiction to show every LL(k) grammar is unambiguous. Let G
be an LL(k) grammar and assume that G is ambiguous. Then there is some string z that has

two distinct leftmost derivations. Let S
∗
⇒ uAv, u ∈ Σ∗, be the initial subderivation that is

identical in both derivations of z. The two derivations can be written

1)S
∗
⇒ uAv

∗
⇒ ux1v

∗
⇒ uw = z

2)S
∗
⇒ uAv

∗
⇒ ux2v

∗
⇒ uw = z.

The derivations continue by applying rules A→ x1 and A→ x2 to the variable A.

These derivations show that the string trunck(w) is in both LAk(uAv,A→ x1) and LAk(uAv,A→
x2). This is a contradiction; the sets LAk(uAv,A → x1) and LAk(uAv,A → x2) are disjoint
since G is an LL(k) grammar. Thus our assumption, that G is ambiguous, must be false.

The exercise asked us to show that every strong LL(k) grammar is unambiguous. This follows
immediately since the strong LL(k) grammars are a subfamily of the LL(k) grammars.

9. a) The lookahead sets for the rules of G1 are

Rule Lookahead set
S → aSb {ajaicibj | j > 0, i ≥ 0}
S → A {aici | i ≥ 0}
A→ aAc {aici | i > 0}
A→ λ {λ}

For any k > 0, the string ak is a lookahead string for both of the S rules. Thus G1 is not
strong LL(k).

A pushdown automaton that accepts L(G1) is defined by the following transitions.

δ(q0, a, λ) = [q1, A]
δ(q1, a, λ) = [q1, A]
δ(q1, b, A) = [q2, λ]
δ(q1, c, A) = [q3, λ]
δ(q2, b, A) = [q2, λ]
δ(q3, b, A) = [q2, λ]
δ(q3, c, A) = [q3, λ]

States q0 and q1 read an a and push A onto the stack. State q3 reads the c’s and q2 the
b’s with each transition popping the stack. The accepting states are q0 and q2.

104 CHAPTER 19. LL(K) GRAMMARS

11. a) The process of transforming the grammar into an equivalent strong LL(1) grammar begins
by removing the directly left recursive A rules, producing

S → A#
A→ aB | ZaB
B → bBc | λ
Z → bZ | cZ | b | c

The resulting grammar is not strong LL(1) since there are two Z rules that begin with b
and two that begin with c. Left factoring these rules we obtain

S → A#
A→ aB | ZaB
B → bBc | λ
Z → bX | cY
X → Z | λ
Y → Z | λ

Examining the length one lookahead sets, we see that this grammar is strong LL(1).

Rule Lookahead set
S → A# {a, b, c}
A→ ab {a}
A→ Zab {b, c}
B → bBc {b}
B → λ {#}
Z → bX {b}
Z → cY {c}
X → Z {b, c}
X → λ {a}
Y → Z {b, c}
Y → λ {a}

13. a) The lookahead sets for the grammar G

S → aAcaa | bAbcc

A→ a | ab | λ

are

Rule Lookahead set
S → aAcaa {aacaa, aabcaa, acaa}
S → bAbcc {babcc, babbcc, bbcc}
A→ a {acaa, abcc}
A→ ab {abcaa, abbcc}
A→ λ {caa, bcc}

One symbol lookahead is sufficient to discriminate between the S rules. Four symbols are
required to choose the appropriate A rule. Thus G is strong LL(4).

To show that G is LL(3), the lookahead sets are constructed for the sentential forms of
the grammar.

Rule Sentential form Lookahead set
S → aAcaa S {aaccaa, aabcaa, acaa}

SOLUTIONS TO EXERCISES 105

S → bAbcc S {babcc, babbcc, bbcc}

A→ a aAcaa {acaa}
A→ ab aAcaa {abcaa}
A→ λ aAcaa {caa}

A→ a bAbcc {abcc}
A→ ab bAbcc {abbcc}
A→ λ bAbcc {bcc}

14. For every i > 0, the string ai is a prefix of both ai and aibi.

A nondeterministic pushdown automaton that accepts {ai | i ≥ 0} ∪ {aibi | i ≥ 0} was
given in Example 7.1.2. A deterministic approach to recognizing strings of this form uses an
endmarker # on the strings. The computation reads leading a’s and pushes an A on the stack
in state q0 until either the endmarker or a b is read. If the endmarker is read, the stack is
popped and the string is accepted. If a b is read, a loop is entered that compares the number
of b’s with the number of A’s stored on the stack. The pushdown automaton defined by the
transitions

δ(q0, a, λ) = {[q0, A]}

δ(q0,#, λ) = {[q1, λ]}

δ(q0, b, A) = {[q2, λ]}

δ(q1, λ, A) = {[q1, λ]}

δ(q2, b, A) = {[q2, λ}

δ(q2,#, λ) = {[q2, λ}

with accepting states q1 and q2 accepts the language.

15. It follows immediately from the definitions of LL(1) and strong LL(1) grammars that a strong
LL(1) grammar G is also LL(1). To conclude that these families of grammars are identical, we
must show that every LL(1) grammar is also strong LL(1).

Let G = (V, Σ, S, P) be an LL(1) grammar and assume that it is not strong LL(1). Since G
is not strong LL(1), there are derivations

S
∗
⇒ u1Az1 ⇒ u1xz1

∗
⇒ u1v1z1

∗
⇒ u1v1w1

S
∗
⇒ u2Az2 ⇒ u2yz2

∗
⇒ u2v2z2

∗
⇒ u2v2w2

where

a) ui, vi, and wi are in Σ∗, zi ∈ (Σ ∪V)∗,

b) u1v1w1 6= u2v2w2,

c) A→ x and A→ y are distinct rules of G, and

d) FIRST1(v1w1) = FIRST1(v2w2).

That is, the FIRST sets do not distinguish between the rule A→ x and A→ y.

We will use the preceding derivations to show that the original grammar G is not LL(1). But
this is a contradiction, so our assumption that G is not strong LL(1) must be false. There are
two cases to consider: when v1 = v2 = λ and when at least one of v1 or v2 is not λ.

106 CHAPTER 19. LL(K) GRAMMARS

Case 1: v1 = v2 = λ. In this case, both of the rules A → x and A → y initiate derivations of
the form A

∗
⇒ λ. Using these subderivations, we have two distinct derivations

S
∗
⇒ u1Az1 ⇒ u1xz1

∗
⇒ u1z1

∗
⇒ u1w1

S
∗
⇒ u1Az1 ⇒ u1yz1

∗
⇒ u1z1

∗
⇒ u1w1

of the string u1w1. Since the lookahead sets LA1(u1Az1, A→ x) and LA1(u1Az1, A→ y) are
not disjoint, G is not LL(1).

Case 2: At least one of v1 or v2 is not λ. Without loss of generality, assume that v1 6= λ. From
d) above we note that

FIRST1(v1w1) = FIRST1(v1) = FIRST1(v2w2).

We can build derivations

S
∗
⇒ u2Az2 ⇒ u2xz2

∗
⇒ u2v1z2

∗
⇒ u2v1w2

S
∗
⇒ u2Az2 ⇒ u2yz2

∗
⇒ u2v2z2

∗
⇒ u2v2w2,

which demonstrate that LA1(u2Az2, A → x) and LA1(u2Az2, A → y) have the same FIRST1

set and consequently G is not LL(1).

In both cases, we have shown that a grammar that is strong LL(1) is also LL(1). Combining
this with inclusion of the familty of LL(1) grammars in the family of strong LL(1) grammars
yields the equality of these families of grammars.

Chapter 20

LR(k) Grammars

1. a) The LR(0) contexts for the rules of G

S → AB

A→ aA | b

B → bB | a

are obtained from the rightmost derivations

S ⇒ AB
i
⇒ AbiB ⇒ Abia

j
⇒ ajAbiB ⇒ ajbbia

Rule LR(0) contexts
S → AB {AB}
A→ aA {aiA | i > 0}
A→ b {aib | i ≥ 0}
B → bB {AbiB | i > 0}
B → a {Abia | i ≥ 0}

The nondeterministic LR(0) machine of G is constructed directly from the specifications
of Definition 20.3.2.

107

108 CHAPTER 20. LR(K) GRAMMARS

q
0 S→ .AB

λ
A→ .aA

λ

λ

λ

A→ a.A

λ

A→ .b A→ b.

b

B

B

A

a

Aa

b

S→ A.B S→ AB.

B→ bB.

B→ a. B→ b.B

B→ .a B→ .bB

λ

λ

λ

λ

A→ aA.

The deterministic LR(0) machine of G is

q
0

S→ .AB
A→ .aA A→ .aA

A→ a.A

A→ .b A→ .b

A→ b.

b

b

a

a

a

A

A

b b

S→ A.B B

B

S→ AB.

B→ bB.

B→ a.

B→ b.B

B→ .a

B→ .a

B→ .bB

B→ .bB

A→ aA.

a

Since every state with a complete item contains only that item, the grammar G is LR(0).

SOLUTIONS TO EXERCISES 109

3. The grammar AE is not LR(0) since A is an LR(0) context of the rule S → A and a viable
prefix of the rule A→ A+ T .

7. a) The nondeterministic LR(1) machine is constructed for the grammar

S → Ac
A→ BA | λ
B → aB | b

The λ-transitions from the item [S → .Ac, {λ}] generate LR(1) items with lookahead set
{c} since the symbol c must follow all reductions that produce A. Similarly the lookahead
set {a, b, c} is generated by λ-transitions from [A→ .BA, {c}] since the string that follows
B, A in this case, generates a, b and λ.

[S→ .Ac, {λ}]

[A→ ., {c}]

[S→ A.c, {λ}] [S→ Ac., {λ}]

[B→ .aB, {a,b,c}][A→ .BA, {c}]

[A→ B.A, {c}]

[A→ BA., {c}]

A

a

b

c

A

λ

λ

λ λ
λ

λ

λ

λ

B B

q
0

[B→ .b, {a,b,c}]

[B→ .b, {a,b,c}]

[B→ a.B, {a,b,c}]

[B→ aB., {a,b,c}]

The corresponding deterministic LR(1) is

110 CHAPTER 20. LR(K) GRAMMARS

[S→ .Ac, {λ}]

[A→ ., {c}]

[A→ ., {c}]

[S→ A.c, {λ}]

[A→ .BA, {c}]

[S→ Ac., {λ}]

[B→ .aB, {a,b,c}]

[B→ .aB, {a,b,c}]

[B→ .aB, {a,b,c}]

[A→ .BA, {c}]

[A→ B.A, {c}]

[A→ BA., {c}]

A

a

a

b

b

c

A

B

B

B

q
0

[B→ .b, {a,b,c}]

[B→ .b, {a,b,c}]

[B→ .b, {a,b,c}] [B→ .b, {a,b,c}]

[B→ a.B, {a,b,c}] [B→ aB., {a,b,c}]

a

Since the deterministic machine satisfies the conditions of Definition 20.5.3, the grammar
is LR(1).

